PREVIEW QUESTION BANK(Dual)

Module Name : Junior Engineer Electrical Exam Date : 27-Mar-2021 Batch : 12:30-14:30

Sr. No.	Client Q II)uestion D	Question Body and Alternatives	Marks	Ne N	egative Iarks				
Objective Question 1 1 What is the full form of 'AUB' a new multilateral financial institution? 1.0 0.25										
1	1	What is t	he full form of 'AIIB', a new multilateral financial institution?	1.	0	0.25				
		Al : Asea	an Infrastructure Investment Bank							
		A2 : Asia	an Infrastructure Investment Bank – (Correct Alternative)							
		A3 : Asia	an Infrastructure Institutional Bank							
		A4 : Afri	can Infrastructure Investment Bank							
Objec	tive Ques	tion								
2	2	When dic	l 'French Revolution' begin?	1.	0	0.25				
		A1 1810 :	0							
		A2 : 1850	0							
		A3 : 1789	9 – (Correct Alternative)							
		A4 : 1860	0							
Objec	tive Ques	tion								
3	3	In tribal p	polity, the officer who enjoyed authority over a large land or pasture ground is called	1.	0	0.25				
		A1 : Vra	japati – (Correct Alternative)							
		A2 : Sukt	thams							
		A3 Bha	shvams							

		A4 Upanishad		
Obje	ective Ques	tion		
4	4	Which of the following productions refers to 'Pink Revolution' in Indian Economy?	1.0	0.25
		A1 : Onion - (Correct Alternative) A2 : Wool A3 Milk		

	A4 : Agriculture		
Objective Oue	estion		
5 5	Which of the following taxes does not fall under 'Direct Tax'?	1.0	0.25
	A1 Expenditure Tax		
	A2 : Income Tax		
	A3 Goods and Services Tax – (Correct Alternative)		
	A4 Wealth tax :		
Objective Que	estion		
6 6	The Similipal National Park is located in which state?	1.0	0.25
	A1 : Gujarat		
	A2 : West Bengal		
	A3 : Odisha – (Correct Alternative)		
	A4 : Maharashtra		
Objective Que	estion		
7 7	Who among the following has won the elections and became the Prime Minister of Malta?	1.0	0.25
	A1 : Chris Fearne		
	A2 : Joseph Muscat		
	A3 : Robert Abela – (Correct Alternative)		
	A4 : Ian Borg		
	JL		

8	Which state in India shares Maritime International border with Sri Lanka?	1.0	0.25
	A1 : Gujarat		
	A2 : Tamil Nadu – (Correct Alternative)		
	A3 : Kerala		
	A4 : Andhra Pradesh		

Objective Question

objective Q			
9 9	Who has won the Sir Garfield Sobers Trophy for Best Cricketer of the Year in ICC annual awards 2019?	1.0	0.25
	A1 David Warner		
	A2 : Joe Root		
	A3 Jos Buttler		
	A4 : Ben Stokes – (Correct Alternative)		
Objective Q	lestion		
10 10	Recently, who among the following cricketers won "ICC Spirit of Cricket Award of the Decade"?	1.0	0.25
	A1 Kane Williamson		
	A2 : Mahendra Singh Dhoni – (Correct Alternative)		
	A3 Virat Kohli		
	A4 Steve Smith		
Objective Or			
11 11	Eill in the blank with the appropriate article a an or the or select the option 'No article' if no article is needed	1.0	0.25
	Rubin has terrible leg pain.		
	A1 : a – (Correct Alternative)		
	A2 an		
	A3 the		
	A4 : No article		
Objective Q	Estion	1.0	0.25
	I need English book.		0.25
	A1 a		

		A2 : an – (Correct Alternative)			
		A3 the			
		A4 : No article			
Obje	ctive Ques	tion			
13	13	Fill in the blanks with suitable Preposition from the given alternatives. Several cities have dramatically improved their air quality recent years.	1.0	0.25	

		A1 on :		
		A2 : in – (Correct Alternative)		
		A3 along		
		A4 except		
Obie	ctive Oues	tion]
14	14	Fill in the blanks with suitable Preposition from the given alternatives. The river Ganges flows Uttar Pradesh.	1.0	0.25
		Al against		
		A2 : through – (Correct Alternative)		
		A3 owing to		
		A4 as far as		
Case	Study from	n Question No. 16 to Question No. 18		<u> </u>
15	15	Read the following passage and answer the questions that follow. The Amazon rainforest, the largest of its kind in the world, is ablaze, with over 9,500 distinct fires burning through its main basin since August 15. Overall, Brazil has seen more than 76,000 fires ravage the Amazon in 2019, of which around 10,000 have been started in the past few weeks, mainly by loggers and farmers seeking, as they do during the summer months, to clear vast tracts for agricultural or industrial use. However, this annual exercise of planned deforestation appears to have crossed a tipping point this year. There has been an increase of at least 80% in the number of recorded fires compared to the same period in 2018, according to Brazil's National Institute for Space Research (INPE). This week, images of darkening skies above Sao Paulo, more than 2,700 km away from the fires, went viral. The number and intensity of the fires are closely linked to the rate of deforestation. Some reports estimate that in July 2019, the Amazon shrunk by 1,345 sq km, up 39% from the same month last year, and a historical record. The flames are not confined just to Brazil either. In neighbouring Bolivia, deadly blazes are devastating forests and farmlands, so much so, that its President, Evo Morales, has put his re- election campaign on hold over the weekend, and, unlike his Brazilian counterpart Jair Bolsonaro, was quick to welcome foreign aid to help fight the fires. The distinctly political undertones of the crisis in Brazil sets it apart. Mr. Bolsonaro's critics say that his economic and environmental policies have virtually set the stage for intensifying degradation of the Amazon's rich biodiversity. They argue that since he came to power this year, he has chipped away at the protections that the rainforest enjoyed, including by weakening the environment ministry when he made Ricardo Salles, found guilty of administrative improprieties for altering a map to benefit mining companies, the Environment Minister; by driving away Norway a	3.0	0.75
16	16	Which is closely linked to the increase in intensity and number of fires?	1.0	0.25
			11	11

		A1 Cooking inside the forest			
		A2 Exponential increase in population			
		A3 : Rate of deforestation – (Correct Alternative)			
		A4 : All the above			
17 17	7	Which one of the following most accurately summarizes the main point of the passage?	1.0	0.25	
		A1 Bolivia is helping more to control the situation			

		A2 Brazil's Agriculture will be improved		
		A3 : The fires can be viewed from some other major cities		
		A4 : Increasing Number of Fires are major threat to Amazon's rich Biodiversity – (Correct Alternative)		
18	18	What is the contextual meaning of the highlighted word 'Sacking'?	1.0	0.25
		A1 : Engage		
		A2 : Dismiss – (Correct Alternative)		
		A3 Reserve		
		A4 : Immerse		
Obje	ective Ques	tion		
19	19	Choose the word which best expresses the similar meaning of the given word " EQUIVOCATION ".	1.0	0.25
		A1 Certainty		
		A2 : Ambiguity – (Correct Alternative)		
		A3 Honesty		
		A4 Uprightness		
Obje	ective Ques	tion		
20	20	Find the suitable antonym for the given word " SERVILE ".	1.0	0.25
		A1 Humble		
		A2 : Aggressive – (Correct Alternative)		
		A3 : Abject		

		A4 : Passive		
Obje	ective Ques	tion		
21	21	Choose the one which can be substituted for the given word/sentence. An animal that lives in a group.	1.0	0.25
		A1 Panacea		
		A2 : Horizon		
		A3 : Oculist		

A4 : Gregarious – (Correct Alternative)

Objec	ctive Quest	ion		
22	22	If $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$, the eigen values of A is	1.0	0.25
		A2 2, 4, 4		
		A3 1, 2, 3 : A4		
Objec	tive Quest	: 2, 3, 6 – (Correct Alternative) ion		
23	23	The radius of curvature of the curve $y = e^x$ at the point (0,1) is	1.0	0.25
		A1 : $\sqrt{2}$		
		$\begin{array}{c} A2 \\ \vdots \\ 4\sqrt{2} \end{array}$		
		$\frac{A3}{2\sqrt{2}} - (Correct Alternative)$		
01.		A4 ∶ 3√2		
Objec	ctive Quest	10N	4.5	0.55
24	24	If $u = f(x - y, y - z, z - x)$, then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} =$	1.0	0.25
		A1 2 :		
		A2 u :		
		A3 0 – (Correct Alternative)		

		A4 $\sqrt{\pi}$		
Obie	ective Oue	stion		
26	26	The complementary function of $x^2y'' + 4xy' + 2y = e^x$ is	1.0	0.25
		$\begin{array}{c} A1\\ \vdots \\ x \\ x \\ x \\ x^2 \end{array}$		
		$\frac{A2}{x} + \frac{B}{x^2} - (Correct Alternative)$		
		$\begin{array}{c} A3\\ \vdots\\ &\frac{A}{x}+\frac{B}{x^3} \end{array}$		
		$\begin{array}{c} A4\\ \vdots \\ x^3 + \frac{B}{x^2} \end{array}$		
Obje	ctive Que	stion][
27	27	The value of $\int_c \frac{z}{z+2} dz$, where C is the circle $ z = 1$ is equal to	1.0	0.25
		A1 1:		
		A2 : -1		
		A3 0 – (Correct Alternative)		
		A4 : π		
Obje	ective Que	stion		
28	28	The value of $L\{tcoshat\}$ is	1.0	0.25
		$\stackrel{A1}{:} \frac{s^2 + a^2}{(s^2 + a^2)^2}$		
		$ \begin{array}{c} A2 \\ \vdots \\ \frac{s^2 + a^2}{(s^2 - a^2)^2} \\ - (Correct Alternative) \end{array} $		
		$ \stackrel{A3}{:} \frac{s^2 - a^2}{(s^2 - a^2)^2} $		

		:		
		A4 at		
		-2K		
Obje	ective Ques	tion		
30	30	The Fourier sine transform of $\frac{1}{x}$ is	1.0	0.25
		$\stackrel{A1}{:} \sqrt{\frac{\pi}{4}}$		
		A2 : $\sqrt{\frac{\pi}{2}}$ - (Correct Alternative)		
		$\stackrel{A3}{:} \sqrt{\frac{\pi}{4}}$		
		$A4$: $-\sqrt{\frac{\pi}{2}}$		
Obje	ective Ques	tion		
31	31	The partial differential equation obtained by eliminating the arbitrary constants from $z = ax + by$ is	1.0	0.25
		$\begin{array}{c} A1\\ \vdots \\ z = qx - py \end{array}$		
		$\begin{array}{l} A2\\ \vdots \end{array} z = px - qy \end{array}$		
		$\begin{array}{l} A3 \\ z = px + qy \\ - (Correct Alternative) \end{array}$		
		$\sum_{i=1}^{A4} z = qx + py$		
Obje	ective Ques	tion		
32	32	Consider the following statements and choose the correct option. Statement 1: The fuse rating is expressed in terms of current. Statement 2: The fuse wire in DC circuit is inserted in negative circuit only.	1.0	0.25
		A1 Both Statement 1 and Statement 2 are TRUE		
		A2 Both Statement 1 and Statement 2 are FALSE		

		A3 : Statement 1 is TRUE and Statement 2 is FALSE – (Correct Alternative)		
		A4 : Statement 1 is FALSE and Statement 2 is TRUE		
Obj	ective Que	stion		
33	33	Statement 1: The sphere-gap will protect the transmission lines and transformers against transient overvaoltage wave of any duration. Statement 2: Sphere gaps are used to measure AC voltage only.	1.0	0.25
		A1 Both Statement 1 and Statement 2 are TRUE		
		A2 Both Statement 1 and Statement 2 are FALSE		

		A3 : Statement 1 is TRUE and Statement 2 is FALSE – (Correct Alternative)		
		A4 Statement 1 is FALSE and Statement 2 is TRUE		
Object	tive Que	n stion		(L
34 3	34	Pre-insertion resistor with circuit breaker is used to	1.0	0.25
		A1 decrease the peak of restriking voltage and the rate of rise of recovery voltage – (Correct Alternative) :		
		A2 increase the peak of restriking voltage and the rate of rise of recovery voltage		
		A3 decrease the peak of restriking voltage and increase the rate of rise of recovery voltage :		
		A4 increase the peak of restriking voltage and decrease the rate of rise of recovery voltage :		
Object	tive Que	stion		
35 3	35	A circuit breaker is rated at 1500 amps, 2000 MVA, 33 kV, 3 sec, 3- phase, oil circuit breaker. Determine the breaking current and making current.	1.0	0.25
		A1 60.60 kA and 89.25 kA		
		A2 : 35 kA and 89.25 kA – (Correct Alternative)		
		A3 49.5 kA and 85.7 kA		
		A4 : 28.5 kA and 85.7 kA		
Object	tive Oue	stion		
36 3	36	In a short circuit test on a circuit breaker, the following readings were obtained on a single frequency transient: (i) Time to reach the peak restriking voltage =50 µs; (ii) the peak restriking voltage = 200 kV. Determine the average rate of rise of recovery voltage (RRRV) and the frequency of oscillation.	1.0	0.25
		A1 : 2 kV/µs, 10 kHz		
		A2 $2 \text{ kV/} \mu \text{s}, 20 \text{ kHz}$		
		A3 : 4 kV/ μs, 10 kHz – (Correct Alternative)		

		A4 : 4 kV/μs, 20 kHz								
Obje	ctive Ques	on								
37	37	The self GMD of the conductor with three strands, each of radius 'r' and touching each other is	1.0	0.25						
		A1 : 1.46r – (Correct Alternative)								
		A2 2.34r								
		A3 0.7788r								

		A4 : 4.67r		
Obie	ctive Oue	stion		
38	38	A 3-phase line is designed with an equilateral spacing of 16 m. It is decided to build the line with horizontal spacing. The conductors are transposed. The spacing between the adjacent conductors is found to be 'x' m to obtain the same inductance as in the original design. What is the value of 'x'?	1.0	0.25
		A1 = 10.3 m		
		A2 = 11.2 m		
		A3 x = 12.7 m – (Correct Alternative)		
		A4: x = 13.5 m		
Obje	ctive Que	stion		
39	39	Calculate the capacitance of a conductor per phase of a three-phase 400 km long line, with the conductors spaced at the corners of an equilateral triangle of side 4 m and the diameter of each conductor being 2.5 cm.	1.0	0.25
		A1 8.352 μF		
		A2 : 5.832 μF		
		A3 3.852 μF – (Correct Alternative)		
		A4 : 2.835 μF		
Obje	ctive Que	stion		
40	40	Determine the capacitance per km per phase for the conductor arrangement of three-phase double-circuit transposed line shown in Fig. The radius of each conductor is 'r' m. \overrightarrow{D}	1.0	0.25
		$\stackrel{A1}{:} C = \frac{1}{3\ln\left\{2^{1/3}\frac{D}{r}\left(\frac{m}{n}\right)^{2/3}\right\}} \mu F / km$		

		$C = \frac{1}{3\ln\left\{2^{1/3}\frac{D}{r}\left(\frac{n}{m}\right)^{2/3}\right\}}\mu F / km$		
Obje	ctive Ques	ion		
41	41	Each strand, in a 19-strand conductor, is of equal diameter and has an inductance of L H/m. The total inductance of the stranded conductor is represented by	1.0	0.25
		A1 19L		
		A2 : L/81		
		A3 L/19 – (Correct Alternative)		
		A4 : L/361		
Ohie	ctive Ones	ion		
42	42	Find the ratio of GMR to overall conductor radius of a stranded conductor having seven identical strands each of radius r as shown in Fig. 4	1.0	0.25
		$D_{12} = 2r^{1}$		
		A1 0.7257 – (Correct Alternative)		
		A2 0.4257 :		
		A3 1.3127 :		
		A4 : 2.177		
Ође 43	43	Which of the following range of wind speed are suitable to operate wind turbines?	1.0	0.25
		A1 30 – 55 m/s		
		$\frac{A2}{20-45}$ m/s		

			$^{A3}: 10-35 \text{ m/s}$			
			A4 5-25 m/s - (Correct Alternative)			
0	bjec	ctive Ques	tion]	
44	4	44	A photocell has a short circuit current of 25 mA, an open circuit voltage of 0.8 V and a maximum power output of 15 mW. What is its fill factor?	1.0	0.25	
			A1 90%			
			A2 85%			

		A3 80%		
		A4 75% – (Correct Alternative)		
Obje	ective Ques	stion		
45	45	The SVC and STATCOM are devices.	1.0	0.25
		A1 Shunt connected – (Correct Alternative)		
		A2 Series connected		
		A3 Combined series-series connected		
		A4 : Combined serie-shunt connected		
Obje	ective Ques	stion		
46	46	The Thevenin's equivalent voltage and reactance of a power system with respect to a node at which the static VAR compensator (SVC) is placed are 0.99 pu and 0.6 pu respectively. The SVC reference voltage and slope reactance are 1.04 pu and 0.03 pu respectively. Calculate the current injected by the SVC.	1.0	0.25
		A1 $I_{SVC} = -0.0479 \text{ pu}$		
		A2 I _{SVC} = - 0.0794 pu – (Correct Alternative) :		
		A3 $I_{SVC} = 0.0834 \text{ pu}$		
		A4 $I_{SVC} = -0.0635 \text{ pu}$		
Obie	ective Oues	tion		
47	47	As per CERC regulations, the time block of each for which special energy meters record values of specified electrical parameters with first time block starting at 00.00 Hrs.	1.0	0.25
		A1 5 minutes		
		A2 : 10 minutes		
		A_{3} 15 minutes – (Correct Alternative)		

	A3 3.636 kA :		
	A4 : 10.49 kA		
)bjective Q	uestion		
9 49	A 3-phase 100 MVA, 10 kV alternator has 5% reactance. Find the external reactance per phase to be connected in series with the alternator so that three-phase short-circuit current does not exceed eight times the full load current.	1.0	0.25
	$^{A1}_{:}$ 7.5 Ω /phase		
	A2 0.75 Ω /phase :		
	A3 : 0.075 Ω/phase – (Correct Alternative)		
	A4 : 0.0075 Ω/phase		
Objective Q	uestion		
	X_m as shown in Fig. The positive and negative sequence impedance of the line respectively are $R I_R I_R $		
	A1 : $Z_1 = j(X_s - X_m)$ and $Z_2 = j(X_s - X_m)$ - (Correct Alternative)		
	$\begin{array}{l} A2\\ \vdots\\ and \ Z_2 = j(X_s + X_m)\\ and \ Z_2 = j(X_s + X_m) \end{array}$		
	$\begin{array}{l} A3\\ \vdots\\ and Z_2 = j(X_s - 3X_m)\\ and Z_2 = j(X_s - X_m) \end{array}$		
	$\begin{array}{l} A4\\ \vdots\\ and \ Z_2 = j(X_s + 3X_m)\\ and \ Z_2 = j(X_s + X_m) \end{array}$		
	negation 201		
1 51		1.0	0.2

pu and j0.02 pu respectively on the machine rating base. The machine is unloaded and working at the rated terminal voltage. If the grounding impedance of the generator is j0.01 pu, then the magnitude of fault current for a b-phase to ground fault is ______

		$V_{aa'1}$ F_0 $V_{aa'2}$ F_0 $V_{aa'2}$ F_0 $V_{aa'2}$ F_0 I_{a2}		
Obje 53	ctive Ques	tion A star-connected balanced load draws a current of 25A per phase when connected to a 440V supply. Determine the 3-phase apparent	1.0	0.25
		Al 9 kVA		
		: 11 kVA		
		A3 : 15.55 kVA		
		A4 : 19.05 kVA – (Correct Alternative)		
Obje	ctive Ques	tion	1.0	0.25
54	54	In a balanced delta-connected system, the magnitude of line current is times the phase current and it lags the phase current by	1.0	0.25
		A1 : 3, 30 ⁰		
		$^{A2}:$ 3, 60 ⁰		
		$ \stackrel{A3}{:} \sqrt{3}, 30^{\circ} - (Correct Alternative) $		
		$\frac{A4}{2}$ $\sqrt{3}$, 60°		
Obje	ctive Ques	tion		
55	55	A symmetrical three-phase three-wire 440 V supplies to a star-connected load. The impedances in each branch of a star-connected load are $Z_R = (2 + j3) \Omega$, $Z_Y = (1 - j2) \Omega$ and $Z_B = (3 + j4) \Omega$. Find its equivalent delta-connected load using star-delta transformation.	1.0	0.25
		A1 ZRY = (5.23 – j0.85) Ω, ZYB = (3.8 – j0.4) Ω and ZBR = (-3 + j8) Ω		
		A2 ZRY = $(3.8 - j0.4) \Omega$, ZYB = $(5.23 - j0.85) \Omega$ and ZBR = $(-3 + j8) \Omega$ – (Correct Alternative)		
		A3 ZRY = (5.23 – j0.85) Ω, ZYB = (-3 + j8) Ω and ZBR = (3.8 – j0.4) Ω		

		A4 ZRY = $(-3 + j8) \Omega$, ZYB = $(3.8 - j0.4) \Omega$ and ZBR = $(5.23 - j0.85) \Omega$									
Obje	bjective Question 5 56 In two wattmeter method of power measurement, one wattmeter reading is negative when power factor angle is than 1.0 0.25										
56	56	In two wattmeter method of power measurement, one wattmeter reading is negative when power factor angle is than	1.0	0.25							
		A1 lesser, 60 degree									
		A2 lesser, 45 degree									
		A3 greater, 60 degree – (Correct Alternative)									
		A4 : greater, 45 degree									
Obie	ective Oue	estion									
57	57	In two-wattmeter method, the readings of wattmeter for a balanced load are, $P1 = 800$ W, $P2 = 600$ W. What is the reactive power of the load?	1.0	0.25							
		A1 346 VAR – (Correct Alternative)									
		A2 600 VAR :									
		A3 692 VAR									
		A4 1200 VAR :									
Obje	ective Que	estion									
58	58	A 3 phase, 30 kW Induction Motor has a power factor of 0.8 lagging. What size of Capacitor in kVAR is required to improve the power factor to 0.95 with constant supply voltage?	1.0	0.25							
		A1 5 kVAR									
		A2 9.5 kVAR									
		A3 13 kVAR – (Correct Alternative)									
		A4 22 kVAR									
Obje	bjective Question										

59 59

```
A current-commutated chopper is fed from a DC source of 220 V. Its commutating components are L = 25
\muH and C = 55 \muF. If load current of 200 A is assumed constant during the commutation process, the peak
commutating current 'I_{\rm cp}' is
A1 296.65 A
A2 326.31 A – (Correct Alternative)
A3 419.52 A
A4
: 461.47 A
```

1.0 0.25

Obje	ctive Ques	tion		
60	60	A transmission line has a reactance of 1 pu is operating at V _s = V _r = 1 pu. The generator is connecred at source end which is delivering 1 pu of active power and the transmission line is compensated with a series capacitance of 0.5 pu. Find the load angle with series capacitance compensation? A1 30 degree - (Correct Alternative) A2 45 degree A3 60 degree A4 90 degree	1.0	0.25
Obje	ctive Ques		1.0	0.25
01	01	A1 j0.5	1.0	0.25
		A2 j0.125		
		A3 j2 – (Correct Alternative)		
		A4 j0.03125		
Obje	ective Ques	tion	1.0	0.25
62	62	Two generators are connected in parallel whose ratings are as follows: G1: 100 MVA, 12 kV, Xg1 = 0.15 pu G2: 200 MVA, 12 kV, Xg2 = 0.25 pu Draw the per unit reactance diagram on a base of 500 MVA and 15 kV. A1 : $f_{g_1} = f_{g_2}$	1.0	0.25
		A2 : ; ; 0.48 ; 0.4		


```
      Statement 1: The transient stability limit of a power system can be increased by series capacitance compensation. Statement 2: The critical clearing time of a fault in power system is related to steady-state stability limit.

      A1
      Both Statement 1 and Statement 2 are TRUE

      .
      A2
      Both Statement 1 and Statement 2 are FALSE

      .
      A3
      Statement 1 is TRUE and Statement 2 is FALSE – (Correct Alternative)

      .
      A4
      Statement 1 is FALSE and Statement 2 is TRUE

      Objective Question
      Objective Question
```


		A3 : 22 – (Correct Alternative)		
		A4 : 24		
Obje	ctive Ques	tion		
68	68	A 3-phase bank of three single-phase transformer are fed from 3-phase 33 kV (line-to-line). It supplies a rated load of 6000 kVA at 11 kV (line-to-line). Both supply and load are 3-wire. Calculate the voltage and kVA rating of the single-phase transformer for Star(Y)-Star(Y) connection.	1.0	0.25
		A1 19.05 kV / 6.35 kV, 2000 kVA – (Correct Alternative)		
		A2 : 33 kV / 11 kV, 2000 kVA		

		A3 : 19.05 kV / 6.35 kV, 6000 kVA		
		A4 : 33 kV / 11 kV, 6000 kVA		
Obie	ective Oue	stion		
69	69	Two similar 250 kVA single phase transformers gave the following results when tested by back to back method: Mains wattmeter, $W1 = 5 kW$ Primary series circuit wattmeter, $W2 = 7.5 kW$ (at full load current) Find out the individual transformer efficiency at 75% full load and 0.8 power factor leading.	1.0	0.25
		A1 94.07%		
		A2 95.04%		
		A3 : 96.03%		
		A4 : 97.02% – (Correct Alternative)		
Ohie		stion		
70	70	A power system has two synchronous generators. The governor-turbine characteristics	1.0	0.25
		P ₁ = 50 (50 - f) · P ₂ = 100 (51 5-f)		
		Where f denotes the system frequency in Hz and P ₁ and P ₂ are respectively, the power outputs (in MW) of turbines 1 and 2. Assume that the generators and transmission network are lossless		
		Find out the percentage load shared by generator 2 if the total load is 600 MW.		
		A1 25%		
		A2 50%		
		A3 66.67%		
		A4 75% – (Correct Alternative)		
Obje		stion		
71	71	Statement 1: String efficiency of an insulator is inversely proportional to the square root of the number of insulator disc units	1.0	0.25
		Statement 2: Capacitance grading is achieved by increasing the capacitances of each unit from the tower end towards the line end.		
		A1 Both Statement 1 and Statement 2 are TRUE		

		A2 Both Statement 1 and Statement 2 are FALSE		
		A3 : Statement 1 is TRUE and Statement 2 is FALSE		
		A4 : Statement 1 is FALSE and Statement 2 is TRUE – (Correct Alternative)		
Obje	ctive Ques	stion		
72	72	A string of three suspension insulators is to be fitted with a grading ring. If the pin to earth capacitances are equal to C, then the value of line to pin capacitance of first and last capacitance(from top) is	1.0	0.25
		A1 $C_1 = C/2$ and $C_2 = C$		

		A2 $C_1 = C/2$ and $C_2 = 2C - (Correct Alternative)$						
		A3 $C_1 = C$ and $C_2 = 2C$						
		A4 $C_1 = C/4$ and $C_2 = 4C$						
Obje	ctive Ques	tion						
73	73	For a generating unit, the fuel input in millions of Btu/hr is expressed as a function of output P_G in MW by 0.035 P_G^2 +6.5 P_G + 150. The fuel cost is Rs.2 per million Btu. Determine the average cost of fuel per MWhr when P_G = 200 MW.	1.0	0.25				
		A1 24.5 Rs/MWhr						
		A2 : 26.5 Rs/MWhr						
		A3 : 28.5 Rs/MWhr – (Correct Alternative)						
		A4 30.5 Rs/MWhr						
Obje	ctive Ques	tion						
74	74	In a simple method of checking the magnetization characteristics of a current transformer,	1.0	0.25				
		A1 An increasing sinusoidal voltage of standard frequency is applied to the secondary winding with the primary short circuited.						
		 A2 An increasing sinusoidal voltage of standard frequency is applied to the secondary winding leaving the primary open : circuited. – (Correct Alternative) 						
		A3 A decreasing sinusoidal voltage of standard frequency is applied to the primary winding with the secondary short circuited.						
		A4 A decreasing sinusoidal voltage of standard frequency is applied to both primary and secondary winding						
Obie	Objective Question							
75	75	The time duration for voltage sag as per IEEE standard is	1.0	0.25				
		A1 : 0.5 cycle to 1 minute – (Correct Alternative)						
		A2 : 0.5 cycle to 2 minute						

		A2 0.5 cycle to 2 minute			
		A3 1 cycle to 1 minute			
		A4 : 1 cycle to 2 minutes			
Obje	ctive Ques	tion			ĺ
76	76	Which is the largest amount of installed grid interactive renewable power capacity in India?	1.0	0.25	
		A1 : wind power – (Correct Alternative)			
		A2 solar power			

		A3 biomass power		
		A4 : small hydro power		
Obi	ective Ou	estion		
77	77	The burning of traditional biomass or biomass related materials provides about percentage of the world's energy consumption	1.0	0.25
		A1 30%		
		A2 25%		
		A3 5%		
		A4 : 10% – (Correct Alternative)		
Obj	ective Qu	estion		
78	78	Consider the following statements and choose the correct option. Statement 1: Natural gas and coal are two fuels used for electricity generation and their cross-price elasticity is positive. Statement 2: If the solar panel industry is competitive, the marginal firm makes zero profits in the long run.	1.0	0.25
		A1 Both Statement 1 and Statement 2 are TRUE – (Correct Alternative)		
		A2 Both Statement 1 and Statement 2 are FALSE		
		A3 Statement 1 is TRUE and Statement 2 is FALSE :		
		A4 : Statement 1 is FALSE and Statement 2 is TRUE		
Obj	ective Que	estion		
79	79	An emf source is present in the following sequence network.	1.0	0.25
		A1 positive – (Correct Alternative)		
		A2 negative		
		A3 Both Positive and Negative :		

		A4 Positive, negative and zero		
Obje	ective Ques	tion		
80	80	A shunt capacitor at 100 MVAr is operated at 105% of its rated voltage and at 98% of its rated frequency. The reactive power produced by the capacitor is	1.0	0.25
		A1 108.045 MVAr – (Correct Alternative)		
		A2 : 112.5 MVAr		
		A3 102.9 MVAr		

44	88.89	MVA
	88.89	MVA

Objective Question 0.25 81 81 1.0 Fig. shows currents in a 3-phase conductor. The ends of the system on the sides of the fault are identified as F, F', while the conductor ends are identified as aa', bb' and cc'. For two conductors open fault, the symmetrical components can be represented as A1 $V_{aa'1} + V_{aa'2} + V_{aa'0} = 0$ $I_{a1} = I_{a2} = I_{a0} = \frac{I_a}{3}$ $V_{aa'1} = V_{aa'2} = V_{aa'0} = \frac{1}{3}V_{aa'}$ A2 : $I_{a1} = I_{a2} = I_{a0} = 0$ $\stackrel{A3}{:} V_{aa'1} + V_{aa'2} + V_{aa'0} = 0$ $I_{a1} = I_{a2} = I_{a0} = 3I_a$ $\stackrel{A4}{:} V_{aa'1} = V_{aa'2} = V_{aa'0} = \frac{1}{3}V_{aa'}$ $I_{a1} = I_{a2} = I_{a0} = \frac{I_a}{3}$ **Objective** Question 82 82 1.0 0.25 Who designed and constructed the first working mechanical calculator? A1 Wilhelm Schickard – (Correct Alternative) A2 Steve John

A3 : Adam Pascal

A4 : Marie Jacquard

83 83	The first IBM Personal computer Acron uses operating system.	1.0	0.25
	A1 UNIX :		
	A2 : LINUX		
	A3 : MS-DOS – (Correct Alternative)		
	A4 WINDOWS		

Objective Ouestion

Obje	ective Qu	lestion		
84	84	The operating system introduced by Apple provides Protected Memory Architecture benefit.	1.0	0.25
		A1 : Apple OS		
		A2 : IOS		
		A3 : Mac OS X – (Correct Alternative)		
		A4 I UNIX		
Ohie	ective Ou	lestion		
85	85	If your computer is not directly connected to a network but has a telephone or cable modem, then you can reach the Internet through	1.0	0.25
		A1 Internet Access Providers – (Correct Alternative)		
		A2 : Network Access Providers		
		A3 : Native Access Providers		
		A4 : Data Access Providers		
Obje	ective Qu	lestion		
86	86	The Computer memory keeps several jobs in memory simultaneously by maintaining them in a	1.0	0.25
		A1 : Memory area		
		A2 : Job pool – (Correct Alternative)		
		A3 Work spooler		
		A4 : Task pool		
Obje		lestion		
87	87	In Microsoft word the page break options are available under which ribbon?	1.0	0.25
		A1 Print Layout ribbon -> Line break group		

```
A2 Review ribbon -> Page setup group
              A3 Print Layout ribbon -> Page setup group – (Correct Alternative)
              A4 Review ribbon -> Print preview group
Objective Question
88
    88
              Which type of section break helps you to start a new section on the same page?
                                                                                                                                             1.0 0.25
              A1 Continuous – (Correct Alternative)
```

		A2 Next page		
		A3 Even page		
		A4 : Odd page		
01 '				
Ође 89	89	A is a list of sources, usually placed at the end of the document, which you consulted or cited in creating the document.	1.0	0.25
		A1 : Index		
		A2 : Table of contents		
		A3 : Bibliography – (Correct Alternative)		
		A4 : Headings		
Obie	ective Oue	stion		
90	90	is the act of secretly or stealthily listening to the private conversation or communications of others without their consent.	1.0	0.25
		A1 : Phishing		
		A2 : ARP cache poisoning		
		A3 : Eavesdropping – (Correct Alternative)		
		A4 : Denial-of-service		
Obje	ctive Oue	stion		
91	91	Statement A: A potential drawback to datagram forwarding is the possibility of a routing loop. Statement B: Routing loop refers to any intentional selection of one route over another, or any elevation of the priority of one class of traffic.	1.0	0.25
		A1 Statement A is true and Statement B is false – (Correct Alternative)		
		A2 : Statement A is false and Statement B is true		

		A3 Both the statements are true		
		A4 Both the statements are false		
Obje	ctive Ques	tion		
92	92	અભ્યુદય' શબ્દનો પર્યાય શબ્દ જણાવો.	1.0	0.25
		A1 :		
		અરુણોદય		
		A2 :		
		ઉજાસ		

		A3 - (Correct Alternative)		
		ઉન્નતિ		
		A4		
		: સવાર		
Obje	ective Que	estion		
93	93	નીચે પૈકી કઇ વિરોધી શબ્દ-જોડી નથી? (1) કુપથ્ય X સુપથ્ય (2) ગહન X ગંભીર (3) નિરામય X રોગીષ્ટ (4) કથીર X કંચન	1.0	0.25
		A1 :		
		(1) કુપથ્ય X સુપથ્ય		
		A2 : - (Correct Alternative)		
		(2) ગહન x ગંભીર		
		A3		
		(3) નિરામય X રોગીષ્ટ		
		A4		
		(4) કથીર X કંચન		
Obje	ective Que	estion		
94	94	આંખ' પરના રુઢિપ્રયોગોમાં કયો એક રુઢિપ્રયોગ નથી?	1.0	0.25
		A1 :		
		આંખ ઠરવી		
		A2 : - (Correct Alternative)		
		આંખો પટપટાવવી		
		A3		
		આંખે ચડવું		
		A4		
		આંખ મીંચામણા કરવા		
Obje	ective Que	estion		
95	95	સ્વભાવ ક્યારેય બદલાતો નથી' એવો અર્થ કઇ કહેવતમાંથી મળતો નથી?	1.0	0.25
		A1		
		કૂતરાની પૂંછડી વાંકી તે વાંકી		
		A2 :		
		દોરડી બળે પણ વળ ન મૂકે		

		A3		
		: וכו גלאי		
		A4		
		ધનશ્યામ		
Obje 07	ective Que	stion	1.0	0.25
91	21	બાપુજીના પત્રો: ગાંધીજી : :માણસાઇના દીવા :	1.0	0.23
		Al		
		કનૈયાલાલ મુનશી		
		A2 :		
		ગુણવંતરાય આચાર્ય		
		A3 : - (Correct Alternative)		
		ઝવેરચંદ મેઘાણી		
		A4 :		
		પન્નાલાલ પટેલ		
Obje	ective Que	stion		1
98	98	નીયેના વાક્યો વાંયો અને તે સાયાં કે ખોટાં તે જણાવો? 1. કપિલ ભણવામાં લક્ષ્ય આપતો નથી. 2. એકવાર સહકુટુંબ જમવા પધારો.	1.0	0.25
		Al		
		વાક્ય 1 સાયું અને વાક્ય 2 ખોટું		
		A2 : - (Correct Alternative)		
		વાક્ય 1 ખોટું અને વાક્ય 2 સાયું		
		A3 :		
		વાક્ય 1 અને વાક્ય 2 બંને સાચાં		
		A4 :		
		વાક્ય 1 અને વાક્ય 2 બંને ખોટાં		
Obje	ective Que	stion		1
99	99	બધા સૈનિકે/ સેનાપતિને/ માન/ આપવું જોઇએ. આ વાક્યનો કયો ભાગ ખોટો છે?	1.0	0.25
		A1 - (Correct Alternative)		
		બધા સૈનિકે		
		A2 :		
		સેનાપતિને		
		A3 :		

		मीन		
		A4		
		આપવું જોઇએ		
Obje	Objective Question			
100	100	નીચેના વાક્યોનું રૂપાંતર કયા પ્રકારમાં થયું છે? 1. અમે વહેલા ઘરે પહોંચી ગયા> અમારાથી વહેલા ઘરે પહોંચી જવાયું. 2. મેં નિર્ણય કર્યો > મારાથી નિર્ણય કરાયો.	1.0	0.25
		A1 : વાક્ય 1 અને વાક્ય 2 કર્મણિ વાક્યરયના		
		A2 : વાક્ય 1 કર્મણિ અને વાક્ય 2 ભાવે વાક્યરયના		

		A3 – (Correct Alternative)		
		વાક્ય 1 ભાવે અને વાક્ય 2 કર્મણિ વાક્યરયના		
		A4		
		વાક્ય 1 અને વાક્ય 2 ભાવે વાક્યરયના		
Obje	ctive Question			
101	101	સંકુલ વાક્યમાં મુખ્ય વાક્ય ગૌણ વાક્ય સાથે કયા સંયોજનોથી જોડાયેલાં હોય છે?	1.0	0.25
		A1 :		
		અને, તથા		
		A2 :		
		કે, અથવા		
		A3 : - (Correct Alternative)		
		જોતો, જ્યારેત્યારે		
		A4 :		
		તેમછતાં		