PREVIEW QUESTION BANK(Dual)

Module Name : Junior Engineer Electrical Exam Date : 27-Mar-2021 Batch : 09:00-11:00

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negative Marks
Object	tive Question			
1	1	What is the full form of 'CVC', an apex Indian governmental body?	1.0	0.25
		A1 Central Voluntary Commission		
		A2 Crime Vigilance Commission :		
		A3 Control Vigilance Commission		
		A4 Central Vigilance Commission – (Correct Alternative)		
Object	tive Question			
2	2	When was the British East India company formed?	1.0	0.25
		A1 1602 :		
		A2 1571 :		
		A3 1600 – (Correct Alternative)		
		A4 1532 :		
Object	tive Question			
3	3	Which place was an emporium of western trade during the Mughal period?	1.0	0.25
		A1 Surat – (Correct Alternative)		
		A2 Hampi		
		A3 Delhi :		
		A4 Madras :		
Object	tive Question			
1	4	Which of the following productions refers to 'Brown Revolution' in Indian Economy?	1.0	0.25
		Al Agriculture :		
		A2 Oil Seeds		
		A3 Cocoa – (Correct Alternative)		

	A4 Wool		
Objective Question			
5 5	Which apex development bank is set up by the Government of India in the field of credit for agriculture and other	1.0	0.25
	economic activities in rural areas in India?		
	A1 FCI		
	A2 DRDO		
	A3 SIDDI		
	A3 SIDBI		
	A4 NABARD – (Correct Alternative)		
Objective Question			
6 6	Which is the world's largest inhabited riverine island?	1.0	0.25
	A1 Lulu Island		
	A2 Majuli – (Correct Alternative)		
	A3 Srirangam		
	A4 Csepel :		
Objective Question			
7	Recently, the ruler Mohammed Hosni Mubarak passed away. He belongs to which country?	1.0	0.25
	Egypt – (Correct Alternative)		
	A2 Syria		
	M 2		
	A3 Iraq		
	A4 Jordan		
Objective Overtion			
Objective Question 8 8	Which of the following states does not share International border with Bhutan?	1.0	0.25
	G		
	Al West Bengal		
	: West Bengai		
	A2 Sikkim		
	: Sikkim		
	A3 Manipur – (Correct Alternative)		
	A4 Assam		
	: Assam		

Object	ive Question			
9	9	Who has won the 'Global Child Prodigy Award 2020' in the category of fitness and martial arts?	1.0	0.25
		A1 Alpesh Patwari		
		A2 Ajay Tokas		
		A3 Anubhav Seth		
		A4 Ishwar Sharma – (Correct Alternative)		
Object	ive Question			
10	10	Who among the following sports persons was awarded "Sports Person of the Year 2020" by Federation of Indian Commerce and Industry (FICCI India Sports Awards 2020)?	1.0	0.25
		A1 Elavenil Valarivan – (Correct Alternative)		
		A2 Shagun Chowdary		
		A3 Elizabeth Koshy		
		A4 Deepali Deshpande		
Object	ing Onesting			
	ive Question	Change the compet auticle to compute the following routing	1.0	0.25
		Choose the correct article to complete the following sentence. Australia's jobless rate unexpectedly increased in January despite a surge in full-time employment.	1.0	0.23
		A1 a		
		A2 an		
		A3 the		
		A4 No article – (Correct Alternative)		
Object	ive Question			
12	12	Choose the correct article to complete the following sentence. Russian policies are thought by many to be among best in the world.	1.0	0.25
		A1 a		
		A2 an		
		A3 the – (Correct Alternative)		
		A4 No article		
	ive Question		1.0	0.25
13	13	Fill in the correct prepositions. The team's late arrival was the rain.	1.0	0.25

		A1 instead of		
		A2 at :		
		A3 owing to – (Correct Alternative)		
		A4 within:		
bjecti	ve Question			
4	14	Fill in the correct prepositions. The world should be animal experimentation.	1.0	0.25
		A1 to		
		A2 by		
		A3 across		
		A4 against – (Correct Alternative)		
ase St	udy from Questio	on No. 16 to Question No. 18		
		Targeting risk factors is key to reducing deaths due to cardiovascular diseases. The reinvention of the wheel can be painful. Taking lessons from those who have already run the wheel several revolutions and tweaking those lessons for domestic conditions might not be a bad idea. For India, there is indeed valuable learning from the results of the Prospective Urban Rural Epidemiology (PURE) study published in The Lancet this week. Studying the situation in 21 countries across five continents, categorised by income levels, researchers showed that while cardiovascular disease (CVD) is the leading cause for death overall, there have been some transitions, particularly in the high-income countries, which have managed to reduce the number of deaths from CVD. In low-income countries, including India, however, CVD is still the top killer, with death three times more frequent than that due to cancer. What flies in the face of logic is that the risk burden of CVD-linked mortality is inversely proportional — lower risk but higher mortality in low-income countries, and higher risk but lower mortality in high-income countries. PURE's analysis concluded that the higher mortality in poorer countries was likely due to other factors, including 'lower quality and less health care'. Access to affordable, quality health care is still a dream in many pockets in India. A great amount of out-of-pocket expenditure (according to Health Ministry data for 2014-15, nearly 62.6 % of India's total health expenditure) often frustrates continuation of treatment, or adherence to drug regimens. While some States have shown limited successes with government-sponsored health insurance schemes, the Centre's Ayushman Bharat Yojana will have to take much of the burden of hospitalisation for complications of non-communicable diseases. National and State schemes running on mission mode, including the National Programme for Prevention and Control of Cancer, Diabetes, CVD and Stroke will have to step up efforts to target people at risk with life-saving i		
6	16	Read the following statements and select the option as per the passage given above. Statement A: In India, CVD is the top killer as compared to Cancer. Statement B: The number of deaths due to CVD in the low-income countries is more than the number of deaths in the high-income countries. Al Statement A is True and Statement B is False Both the statements A and B are False A3 Both the statements A and B are True – (Correct Alternative)	1.0	0.25
		A4 Statement A is False and Statement B is True		

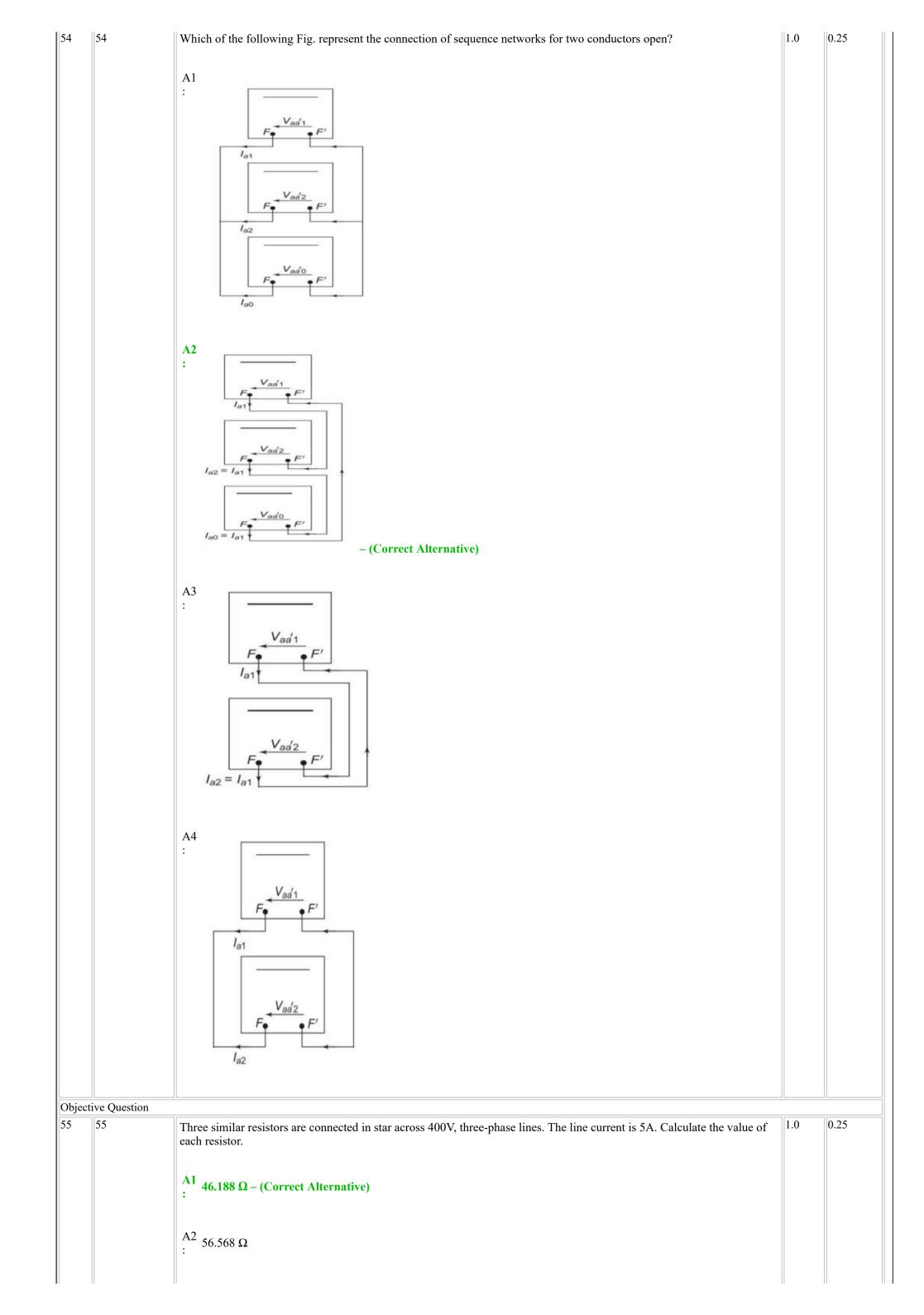
1.0	0.25
1.0	0.25
1.0	0.23
1.0	0.25
1.0	0.25
	1.0

		A2 Universal :		
		A3 Flounder:		
		A4 Protocol :		
	ctive Question			
22	22	If A is a singular matrix, then the product of eigen values of A ² +3A is	1.0	0.25
		A1 0 – (Correct Alternative)		
		A2 4 :		
		A3 ₂ :		
		A4 1 :		
	ctive Question			
23	23	The value of $\lim_{x\to\infty}\frac{x^2}{e^x}$ is	1.0	0.25
		A1		
		A2 -1:		
		A3 0 – (Correct Alternative)		
		A4 ₂ :		
Objec	ctive Question			
24	24	If $w=u^2e^v$ where $u=\frac{x}{y}$ and $v=ylogx$ then the value of $\frac{\partial w}{\partial x}$ is	1.0	0.25
		A1 : $\frac{x^y x}{y^2} (2 + y)$ - (Correct Alternative)		
		$ \begin{array}{ccc} A2 \\ \vdots & \frac{x^y x}{y^2} (2-y) \end{array} $		
		$ \begin{array}{ccc} A3 & \frac{y^x y}{x^2} \\ \vdots & \frac{y^x y}{x^2} \\ \end{array} $		
		$\vdots \qquad \frac{y^x y}{x^2} (2 - y)$		
Ohiac	ctive Question			
25	25	If $w=u^2e^v$ where $u=\frac{x}{y}$ and $v=ylogx$ then the value of $\frac{\partial w}{\partial x}$ is	1.0	0.25
		A1 :		

		$\frac{1}{2}e$		
		$\stackrel{\text{A2}}{:} \frac{1}{2}(e+1)$		
		$\begin{array}{cc} A3 & \frac{1}{2}(e-1) \end{array}$		
		$\frac{A4}{1} \frac{1}{2} (2e+1)$		
Objec	ctive Question			
26	26	The particular integral of $(D^2 + 5)y = x^2 + x + 1$ is	1.0	0.25
		$ \begin{array}{c} A1 \\ \vdots \\ \frac{1}{5}\left(x^2 - x + \frac{3}{5}\right) \end{array} $		
		$ \frac{A2}{5} \left(x^2 + x + \frac{3}{5} \right) - (Correct Alternative) $		
		$\begin{array}{c} A3 \\ \vdots \\ -\frac{1}{5}(x^2+x+1) \end{array}$		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Objec	ctive Question			
27	27	If $w=f(z)$ is analytic, then $\frac{\partial^2 w}{\partial z \partial \bar{z}}$ is equal to	1.0	0.25
		A1 :		
		A2 -1		
		A3 0 – (Correct Alternative)		
		A4 ₂ :		
Objec	ctive Question			
28	28	The value of $L^{-1}\left\{\frac{s+2}{s^2-6s+13}\right\}$ is	1.0	0.25
		A1 e^{3t} : $\frac{e^{3t}}{2}[2\cos 2t + 5\sin 2t]$ - (Correct Alternative)		
		$ \begin{array}{ll} A2 \\ \vdots & \frac{e^{3t}}{2}[5\cos 2t + 2\sin 2t] \end{array} $		
		$ \begin{array}{c} A3 \\ \vdots \\ \frac{e^{-3t}}{2}[2\cos 2t + 5\sin 2t] \end{array} $		

		A4 : $\frac{e^{3t}}{2}[5\cos 2t - 2\sin 2t]$		
		$\frac{1}{2}[5\cos 2t - 2\sin 2t]$		
Object 29	tive Question 29	If $f(x)=(\pi-x)^2$ is a fourier series of period 2π in the interval $(0,2\pi)$, then the value of a_0 is $ \frac{A1}{3} = \frac{-2\pi^2}{3} $	1.0	0.25
		$ \begin{array}{ccc} & & & \\ A2 & & & \\ $		
		$\begin{array}{ccc} A3 & -3\pi^2 \\ \vdots & \hline 2 \end{array}$		
		$\begin{array}{ccc} A4 & 3\pi^2 \\ \vdots & \frac{3\pi^2}{2} \end{array}$		
bject 0	tive Question		1.0	0.25
Ü		The Fourier transform of $f(x)$ is $F(s)$, then for $a > 0$, $F[f(ax)]$ is		0.23
		$\begin{array}{ccc} & A1 \\ \vdots & -\frac{1}{a}F\left(\frac{s}{a}\right) \end{array}$		
		$\frac{A2}{a} aF\left(\frac{s}{a}\right)$		
		$A3$ $-aF\left(\frac{s}{a}\right)$		
		$: \frac{1}{a}F\left(\frac{s}{a}\right) - \text{(Correct Alternative)}$		
Object 1	tive Question	The complete integral of $p^2 + q^2 = 1$ is	1.0	0.25
		The complete integral of $p + q - 1$ is		
		$ z = ax - \sqrt{1 - a^2}y + c $		
		A2 $z = ax + \sqrt{1 - a^2}y + c$ - (Correct Alternative)		
		A3 $z = ax + (1 + a^2)y + c$		
		A4 $z = ax - (1 + a^2)y + c$		
bject 2	tive Question	In HRC fuse, the term 'HRC' stands for	1.0	0.25
		A1 : High Resistance Capability		
		A2 High Rupturing Capacity – (Correct Alternative)		

		A3 High Rating Capacity		
		A4 High Rating of Current :		
Object	tive Question			
33	33	In the translay system of protection of three phase transmission lines, the required number of pilot wire is	1.0	0.25
		A1 2 – (Correct Alternative)		
		A2 3:		
		A3 4 :		
		A4 6 :		
	tive Question			U0.5.5
34	34	Temperature rise test is carried out for all relays	1.0	0.25
		A1 To ascertain correct relay characteristic		
		A2 To ensure integrity of the relay:		
		A3 To check the withstand capability of insulation used in relays – (Correct Alternative)		
		A4 All of the Above		
	tive Question			
35	35	In SF ₆ circuit breaker, the current chopping tendency is minimized by using the SF ₆ gas at pressure and velocity.	1.0	0.25
		A1 low, high		
		A2 high, low:		
		A3 low, low – (Correct Alternative)		
		A4 high, high		
Object	tive Question			
36	36	If the circuit breaker has assigned rated breaking current of 25 kA, the breaker can be used for locations where the RMS value of short circuit current is	1.0	0.25
		A1 less than 25 kA – (Correct Alternative)		
		A2 more than 25 kA but less than 50 kA		
		A3 more than 50 kA		
		A4 zero		


\h.:	iva Ou			
Object 7	37	In a system of 132 kV, the circuit phase to ground capacitance is 0.01 µF and the inductance is 6 H. Calculate the voltage appearing across the pole of a circuit breaker if a magnetizing current of 5 A (instantaneous value) is interrupted.	1.0	0.25
		A1 130.5 kV : A2 128.5 kV		
		A3 122.5 kV – (Correct Alternative)		
		A4 115.5 kV :		
biect	ive Question			
8	38	A composite conductor consists of three conductors of radius R each. The conductors are arranged as shown below. The geometric mean radius (GMR) (in cm) of the composite conductor is kR. The value of k is All 1.9 – (Correct Alternative) A2 0.75	1.0	0.25
		A3 3 : A4 2.5 :		
bject)	ive Question		1.0	0.25
		Calculate the inductance per conductor of the single-phase double circuit line shown in Fig. The diameter of each conductor is 2 cm. Al 1.32 mH/km A2 0.75 mH/km A3 0.52 mH/km – (Correct Alternative)		
Object 10	ive Question 40	The capacitance (F) per phase per meter of a double circuit 3-phase transmission line in regular hexagonal spacing	1.0	0.25

II				
		$C = \frac{\pi \varepsilon_0}{\ln\left(\frac{D}{\sqrt{2}r}\right)}$		
		$C = \frac{\pi \varepsilon_0}{\ln\left(\frac{\sqrt{3}D}{2r}\right)}$		
		A3 $C = \frac{4\pi\varepsilon_0}{\ln\left(\frac{D}{r}\right)}$		
		: $C = \frac{4\pi\varepsilon_0}{\ln\left(\frac{\sqrt{3}D}{2r}\right)}$ - (Correct Alternative)		
Object 41	tive Question	A three phase 50 Hz overhead line has regularly transposed conductors equilaterally placed at 4 m spacing. The capacitance is 0.01 μF/km. Recalculate the capacitance per km to neutral when conductors are in the same horizontal plane with successive spacing of 4m and are regularly transposed.	1.0	0.25
		A1 0.0096 μF/km – (Correct Alternative)		
		A2 0.096 μF/km		
		$^{A3}_{:}$ 0.96 µF/km		
		A4 9.6 μF/km		
Object	tive Question	Which of the following statements regarding bundled conductors is true?	1.0	0.25
		A1 They increase corona loss and decreases reactance.		
		A2 They decrease corona loss and increases reactance		
		A3 They decrease both corona loss and reactance – (Correct Alternative)		
		A4 They increase both corona loss and reactance		
Object	tive Question			
43	43	Find GMR of a stranded conductor having seven identical strands each of radius r as shown in Fig.	1.0	0.25
		$iD_{12}=2r^{i}$		
		A1 3r		

		A2 1.414r		
		A3 1.732r		
		A4 2.177r – (Correct Alternative)		
	tive Question			
44	44	Which of the following states produce maximum wind energy in India?	1.0	0.25
		A1 Tamil Nadu – (Correct Alternative)		
		A2 Gujarat :		
		A3 Rajasthan :		
		A4 Maharashtra :		
	tive Question			
45	45	In wind turbine design, the term Tip Speed Ratio (TSR) is defined as	1.0	0.25
		$TSR = 1 - \frac{\text{WindSpeed}}{\text{TipSpeedof balde}}$		
		$TSR = \frac{\text{WindSpeed}}{\text{TipSpeedof balde}}$		
		: $TSR = \frac{\text{Tip Speed of balde}}{\text{Wind Speed}}$ - (Correct Alternative)		
		$: TSR = 1 - \frac{\text{Tip Speed of balde}}{\text{Wind Speed}}$		
Object	tive Question			
46	46	The photovoltaic array comprises of 16 modules each with a rating of 160 W peak. Taking the derating of array as 0.77, and daily sunshine hours of 6, the DC energy output of the array is	1.0	0.25
		A1 32.85 kWh :		
		A2 23.38 kWh		
		A3 19.95 kWh		
		A4 11.83 kWh – (Correct Alternative)		
Objec	tive Question			
47	47	The Unified Power Flow Controller (UPFC) is a combination of	1.0	0.25
		A1 SSSC and TSC:		

	\parallel :		
	A3 TSSC and TCR		
	A4 STATCOM and SSSC – (Correct Alternative)		
Objective Question 8 48	TI CTO Controlled Series Conseiter (CCSC) consists of a conscitor in with a GTO thyristor	1.0	0.25
	The GTO Controlled Series Capacitor (GCSC) consists of a capacitor in with a GTO thyristor.		0.23
	A1 fixed, series		
	A2 fixed, parallel – (Correct Alternative)		
	A3 variable, series		
	A4 variable, parallel		
Objective Question			
49 49	is the amount of electric power that can be transferred reliably over the inter-control area transmission system under a given set of operating conditions considering the effect of occurrence of the worst credible contingency.	1.0	0.25
	A1 Total Tansfer Capability – (Correct Alternative)		
	A2 Transmission Reliability Margin		
	A3 Available Tansfer Capability		
	A4 Transmission Availability Margin		
Objective Question			
50 50	A 3-phase, 20 MVA, 11 KV alternator has 10% sub-transient reactance. Find short circuit MVA and current, if a symmetrical fault occurs at its terminals.	1.0	0.25
	A1 100 MVA and 10.5 kA		
	A2 200 MVA and 10.5 kA – (Correct Alternative)		
	A3 100 MVA and 18.18 kA		
	A4 200 MVA and 9.09 kA		
Objective Question 51 51	Fig. shows the single-line diagram of a power system. The % reactance value of the 11 kV generators is calculated by taking their ratings as base values. Calculate the short-circuit MVA if a 3-phase fault occurs at the beginning of the feeder. Choose base MVA as 20 MVA.	1.0	0.25
	10 MVA G		
	11 KV F		
	20 MVA 40%		

		II	
	A1 45 MVA :		
	A2 90 MVA – (Correct Alternative)		
	A3 130 MVA		
	A4 180 MVA		
Objective Question 2 52		1.0	0.25
	Generally in transmission lines, the zero sequence impedance is positive and negative sequence impedances.	1.0	0.23
	A1 negligible compared to		
	A2		
	A2 equal to		
	A3 slightly smaller than		
	: Slightly smaller than		
	A4		
	A4 larger than – (Correct Alternative)		
Dhiective Operation			
bjective Question 3 53	Determine the magnitudes of the symmetrical components $(I_{R1}, I_{R2} \text{ and } I_{R0})$ of the currents in a three phase (RYB) three	1.0	0.25
	wire system, when a short circuit occurs between R and Y phase wires, the fault current being 200 A.		
	A1 $ I_{R1} = \frac{100}{\sqrt{3}} A $ $ I_{R2} = \frac{100}{\sqrt{3}} A $ $ I_{R0} = \frac{100}{\sqrt{3}} A $		
	100		
	$\left I_{R2}\right = \frac{100}{\sqrt{3}}A$		
	$ T = \frac{100}{4}$		
	$ I_{R0} = \frac{1}{\sqrt{3}} A$		
	A2 $ I_{R1} = \frac{100}{\sqrt{3}} A$ $ I_{R2} = \frac{100}{\sqrt{3}} A$		
	$\int_{-\infty}^{\infty} R11^{-1} \sqrt{3}$		
	$ I_{R2} = \frac{100}{6} A$		
	√3		
	$ I_{R0} = 0A$		
	: $ I_{R1} = \frac{200}{\sqrt{3}} A$ $ I_{R2} = \frac{200}{\sqrt{3}} A$ $ I_{R0} = 0 A$ (Correct Alternative)		
	$\sqrt{3}$		
	$ I_{R2} = \frac{200}{\sqrt{5}} A$		
	√3 T 0 d		
	$ I_{R0} = 0A$ - (Correct Alternative)		
	A4 200		
	$ I_{R1} = \frac{200}{\sqrt{3}} A$		
	$ I_{R1} = \frac{200}{\sqrt{3}} A$ $ I_{R2} = \frac{200}{\sqrt{3}} A$ $ I_{R0} = \frac{200}{\sqrt{3}} A$		
	$\sqrt{3}$		
	$\left I_{R0}\right = \frac{200}{\sqrt{2}}A$		
II	√3		
jective Question			

		$\stackrel{A3}{:} 80 \Omega$		
		$^{\mathrm{A4}}_{:}$ 138.56 Ω		
Object	tive Question			
56	56	Three capacitors of $100 \mu F$ each are connected in delta to a $400 V$, three-phase, $50 Hz$ supply. What will be the capacitance of each of the three capacitors if the same three capacitors are connected in star across the same supply to draw the same line current?	1.0	0.25
		A1 33.33 μF		
		A2 100 μF		
		A3 200 μF		
		A4 300 μF – (Correct Alternative)		
	rive Question			
57	57	Consider the following statements about feeding 3-phase loads from a balanced 3-phase supply and choose the correct	1.0	0.25
		option. Statement 1: In an unbalanced delta-connected load, the sum of the three-phase voltages is zero. Statement 2: In a four-wire system, the voltages are always balanced irrespective of balanced or unbalanced load.		
		A1 Both Statement 1 and Statement 2 are TRUE – (Correct Alternative)		
		A2 Both Statement 1 and Statement 2 are FALSE :		
		A3 Statement 1 is TRUE and Statement 2 is FALSE:		
		A4 Statement 1 is FALSE and Statement 2 is TRUE		
Object	tive Question]	
58	58	Determine the power and power factor (pf) of a three-phase load if the two wattmeters used for power measurement by Two Wattmeter method read 500 W each of positive sign.	1.0	0.25
		$^{A1}_{:}$ 1000 W, pf = 0		
		A2 1000 W, pf = 1 – (Correct Alternative)		
		A3 0 W, pf = 0		
		$A4 \ 0 \ W, pf = 1$		
Object	tive Question]	
59	59	In Two Wattmeter method, each of two wattmeters connected to measure the power input to a three-phase circuit read 10 kW on a balanced load, when the power factor is unity. What does the instruments read when the power factor falls to 0.866 lagging, the total three-phase power remaining unaltered?	1.0	0.25
		A1 $P_1 = 0 \text{ kW} \text{ and } P_2 = 20 \text{ kW}$		
		$A2 P_1 = 10 \text{ kW} \text{ and } P_2 = 10 \text{ kW}$		

	$\begin{vmatrix} A_3 \\ P_1 = 6.66 \text{ kW and } P_2 = 13.34 \text{ kW} - \text{(Correct Alternative)} \end{vmatrix}$		
	$A4 P_1 = 3.33 \text{ kW} \text{ and } P_2 = 16.67 \text{ kW}$		
bjective Question			
60	What should be the kVA rating of a capacitor which would raise the power factor of a single phase load of 100 kW from 0.5 lagging to 0.9 lagging with constant supply voltage?	1.0	0.25
	A1 125 kVA – (Correct Alternative)		
	A2 100 kVA		
	A3 250 kVA		
	A4 175 kVA		
pjective Question			
61	The power circuit diagram of the load-commutated chopper consists of four thyristors T_1 – T_4 and one commutating capacitor C is shown in Fig. If the maximum chopping frequency is ' f_{max} ', the value of commutating capacitor C is given by	1.0	0.25
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$C = \frac{I_0}{\sqrt{2}V_s f_{\text{max}}}$		
	$C = \frac{2I_0}{3V_s f_{\text{max}}}$		
	: $C = \frac{I_0}{2V_s f_{\text{max}}}$ - (Correct Alternative)		
	$C = \frac{2I_0}{V_s f_{\text{max}}}$		
ojective Question			
62	A shunt reactor at 200 MVAr is operated at 99% of its rated voltage and at 97% of its rated frequency. The reactive power absorbed by the reactor is	1.0	0.25
	A1 202.08 MVAr – (Correct Alternative)		
	A2 204.12 MVAr		

		A3 195.96 MVAr :		
		A4 197.94 MVAr :		
bjecti	ive Question			
3	63	If the real power flow through the uncompensated line is 1 pu and the degree of series compensation 'K' is 0.5, the power flow through the series compensated line is	1.0	0.25
		A1 0.5 pu		
		A2 4 pu :		
		A3 1 pu :		
		A4 2 pu – (Correct Alternative)		
Objecti	ive Question			
54	64	The per unit impedance of the circuit element is j0.2. If the base kV is doubled and base MVA is halved, then the new value of the per unit impedance of the circuit element will be	1.0	0.25
		A1 j 0.4		
		A2 j 1.6		
		A3 j 0.1		
		A4 j 0.025 – (Correct Alternative)		
Objecti	ive Question			
65	65	Three generators are connected in parallel whose ratings are as follows: G1: 100 MVA, 12 kV, Xg1 = 0.1 pu G2: 200 MVA, 12 kV, Xg2 = 0.15 pu G3: 150 MVA, 15 kV, Xg1 = 0.15 pu Find the equivalent per unit reactance of the system on 200 MVA, 15 kV system base.	1.0	0.25
		A1 0.019 pu		
		A2 0.043 pu – (Correct Alternative)		
		A3 0.19 pu		
		A4 0.43 pu :		
Objecti	ive Question			
	66	A power system network consists of three elements as shown in Fig. All values are in per unit. It's bus impedance matrix is given by	1.0	0.25
		j0.3		

	A1 $Z_{bus} = \begin{bmatrix} j0.3 & j0.12 \\ j0.12 & j0.75 \end{bmatrix}$ A2 $Z_{bus} = \begin{bmatrix} j0.3 & j0.45 \\ j0.45 & j0.75 \end{bmatrix}$ A3 : $Z_{bus} = \begin{bmatrix} j0.18 & j0.12 \\ j0.12 & j0.18 \end{bmatrix}$ - (Correct Alternative)		
	$Z_{bus} = \begin{bmatrix} j0.18 & j0.45 \\ j0.45 & j0.18 \end{bmatrix}$		
Objective Question 67 67	Statement 1: The transient stability of the power system can be effectively improved by phase shifting transformer. Statement 2: The steady state stability of a power system is improved by single pole switching. Al Both Statement 1 and Statement 2 are TRUE:	1.0	0.25
	A2 Both Statement 1 and Statement 2 are FALSE – (Correct Alternative) A3 Statement 1 is TRUE and Statement 2 is FALSE :		
	A4 Statement 1 is FALSE and Statement 2 is TRUE		
Objective Question 68 68	The feeder lines that interconnect two sub-stations in a given area are sometimes called as A1 Tie Lines – (Correct Alternative)	1.0	0.25
	A2 Transmission Lines A3 Distribution Lines A4 All of the Above		
Objective Question			
69 69	In the network as shown in Fig, the marked parameters are p.u. impedances. The bus-admittance matrix of the network is j0.2	1.0	0.25
	A1 :		

	$Y_{bus} = \begin{bmatrix} -j5 & j5 \\ j5 & -j5 \end{bmatrix}$		
	$Y_{bus} = \begin{bmatrix} -j10 & j10 \\ j10 & -j5 \end{bmatrix}$		
	$Y_{bus} = \begin{bmatrix} -j10 & j5 \\ j5 & -j5 \end{bmatrix}$ - (Correct Alternative)		
	$ Y_{bus} = \begin{bmatrix} -j10 & j5 \\ j5 & -j10 \end{bmatrix} $		
Objective Question			
70 70	In a load flow problem solved by Newton-Raphson method with polar coordinates, the size of the Jacobian is 75 x 75. If there are 25 PV buses in addition to PQ buses and a slack bus, the total number of buses in the system is	1.0	0.25
	A1 50		
	A2 51 – (Correct Alternative)		
	A3 75		
	A4 76		
Objective Question 71 71	A 50 kVA, 4400/220 V transformer has primary winding and secondary winding resistance are R1 = 3.45 Ω and R2 =	1.0	0.25
	0.009Ω respectively. Calculate the equivalent resistance of the transformer as referred to primary side.		
	$\stackrel{\text{A1}}{:}$ 3.45 Ω		
	A2 7.05 Ω – (Correct Alternative)		
	A3 13.80 Ω		
II.			
	A4 17.62 Ω		
-	: 17.02 \$2	1.0	0.25
Objective Question 72 72		1.0	0.25
-	Open circuit and short circuit tests on a 3 kVA, 230 / 230 V, 50 Hz, single phase transformer gave the following results: OC test: 230 V, 2 A, 100 W SC test: 15 V, 13 A, 120 W	1.0	0.25
-	Open circuit and short circuit tests on a 3 kVA, 230 / 230 V, 50 Hz, single phase transformer gave the following results: OC test: 230 V, 2 A, 100 W SC test: 15 V, 13 A, 120 W Determine the efficiency of the transformer at full load and 0.80 power factor lagging.	1.0	0.25

	A4 98.60%		
bjective Question			
73	Statement 1: The string efficiency of a DC system is 100%. Statement 2: Suspension insulators are made up of porcelain.	1.0	0.25
	A1 Both Statement 1 and Statement 2 are TRUE – (Correct Alternative)		
	A2 Both Statement 1 and Statement 2 are FALSE :		
	A3 Statement 1 is TRUE and Statement 2 is FALSE		
	A4 Statement 1 is FALSE and Statement 2 is TRUE		
jective Question		1.0	0.25
	are all equal to C, find the value of line to pin capacitance ${}^{\prime}C_{1}{}^{\prime}$ that would give a uniform voltage distribution over the string.		
	$\begin{vmatrix} A1 & C_1 = C \\ \vdots & & \\ \end{vmatrix}$		
	$ \begin{array}{c} A2 \\ \vdots \\ \end{array} $ $C_1 = 3C$		
	A3 C ₁ = C/7 – (Correct Alternative)		
	$A4 C_1 = 3C/5$		
jective Question			
75	For a generating unit, the fuel input in millions of Btu/hr is expressed as a function of output P_G in MW by 0.035 P_G 2 +6.5 P_G + 150. Determine the equation for incremental fuel cost in Rs/MWhr as a function of PG in MW based on a fuel cost of Rs. 2 per million Btu.	1.0	0.25
	$\frac{A1}{dP_G} = 0.07P_G + 13$		

		$\frac{A2}{dP_G} = 0.07P_G + 26$		
		A3 : $\frac{dF}{dP_G} = 0.14P_G + 13$ - (Correct Alternative)		
		$\frac{dF}{dP_G} = 0.14P_G + 26$		
	ive Question			
	76	Individual Voltage distortion based on IEEE 519 standard in 11 kV system must be limited to of fundamental component.	1.0	0.25
		A1 1% :		
		A2 2% :		
		A3 3% – (Correct Alternative)		
		A4 4% :		
Object	ive Question			
	77	Which biomass feedstock has the least environmental risk?	1.0	0.25
		A1 Corn		
		A2 Palm oil		
		A3 Forest residues – (Correct Alternative)		
		A4 All of the above		
Objecti	ive Question			
	78	Statement 1: The percentage of energy saved at the current rate of use, compared to the reference year rate of use, is called energy utilization. Statement 2: Pipelines is the most common and economical way of transporting natural gas over land for a distance less than 1500 km.	1.0	0.25
		A1 Both Statement 1 and Statement 2 are TRUE		
		A2 Both Statement 1 and Statement 2 are FALSE		
		A3 Statement 1 is TRUE and Statement 2 is FALSE:		
		A4 Statement 1 is FALSE and Statement 2 is TRUE – (Correct Alternative)		
Object	ive Question			
Object.	79		1.0	0.25
	1			

	Consider the symmetrical component complex operator $a = 1 \angle 120^{\circ}$. Consider the following relations: 1. $1 + a + a^{2} = 0$ 2. $1 + a^{4} + a^{5} = 0$ 3. $1 - a^{3} = 0$ Choose the correct option. All Only 1 is correct A2 Only 2 is correct A3 Only 3 is correct A4 All are correct – (Correct Alternative)		
Objective Question 80 80	Two generators of the ratings 50 MW and 500 MW, respectively are supplying power to a system. The frequency is 50 Hz and each generator is half loaded. The system load increases by 110 MW and as a result the frequency drops to 49.5 Hz. What must be the individual regulations if the two generators should increase their turbine powers in proportion to their ratings? A1 $R_1 = R_2 = 5\%$ — (Correct Alternative) A2 $R_1 = 0$ and $R_2 = 5\%$ $A3 R_1 = 5\% \text{ ad } R_2 = 0$ $A4 R_1 = R_2 = 2.5\%$	1.0	0.25
Objective Question 81 81	Fig. shows currents in a 3-phase conductor. The ends of the system on the sides of the fault are identified as F, F', while the conductor ends are identified as aa',bb' and cc'. For one conductor open fault, the symmetrical components can be represented as $ \begin{bmatrix} I_a & & & & & & & & & & & & & & \\ I_a & & & & & & & & & & \\ I_b & & & & & & & & & \\ I_b & & & & & & & & \\ I_c & & & & & & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & \\ I_{a1} & I_{a2} & I_{a0} & 0 & & & \\ I_{a2} & I_{a0} & I_{a0} & I_{a0} & & & \\ I_{a1} & I_{a2} & I_{a0} & I_{a0} & & & \\ I_{a2} & I_{a2} & I_{a0} & I_{a0} & & & \\ I_{a1} & I_{a2} & I_{a0} & I_{a0} & & & \\ I_{a2} & I_{a2} & I_{a0} & I_{a0} & & & \\ I_{a1} & I_{a2} & I_{a0} & I_{a0} & & & \\ I_{a2} & I_{a2} & I_{a0} & I_{a0} & & & \\ I_{a1} & I_{a2} & I_{a0} & I_{a0} & & & \\ I_{a2} & I_{a2} & I_{a2} & I_{a2} & & & \\ I_{a3} & I_{a2} & I_{a2} & I_{a2} & & & \\ I_{a4} & I_{a2$	1.0	0.25

Objecti	ive Question			
_	82	Which of the following computers belongs to Second generation of computers?	1.0	0.25
		A1 ENIAC:		
		A2 TRADIC – (Correct Alternative)		
		A3 CDC 6600		
		A4 IBM 360		
Objecti	ive Question			
83	83	Device driver is defined as	1.0	0.25
		A1 a shell and is essential if human interaction is to be supported.		
		A2 a memory management technique that provides an "idealized abstraction of the storage resources that are actually available on a given machine" which "creates the illusion to users of a very large (main) memory".		
		A3 a specific type of computer software developed to allow interaction with hardware devices. – (Correct : Alternative)		
		A4 an abstract layer on top of a more concrete file system.		
Objecti	ive Question			
84	84	Statement A: Distributed Operating System manages a group of distinct, networked computers and makes them appear to be a single computer, as all computations are distributed (divided amongst the constituent computers). Statement B: In the distributed and cloud computing context of an OS, templating refers to creating a single virtual machine image as a guest operating system, then saving it as a tool for multiple running virtual machines.	1.0	0.25
		A1 Statement A is true and Statement B is false		
		A2 Statement A is false and Statement B is true		
		A3 Both the statements are true – (Correct Alternative)		
		A4 Both the statements are false:		
Objecti	ive Question			
85	85	A color code "FFFFFF" refers to white color. Which number system is used to denote this value?	1.0	0.25
		A1 Binary		
		A2 Octal		
		A3 Decimal:		
		A4 Hexadecimal – (Correct Alternative)		
Ohiecti	ive Question			
86	86	Statement A: Flash memory is slower than DRAM but needs no power to retain its contents. Statement B: Solid-state disks have several variants but in general are faster than magnetic disks and are nonvolatile.	1.0	0.25
	'			

	A1 Statement A is true and Statement B is false		
	A2 Statement A is false and Statement B is true		
	A3 Both the statements are true – (Correct Alternative)		
	A4 Both the statements are false		
Objective Question			
87 87	enable/s Excel to dynamically produce new outputs when one or more inputs in the referenced cells are changed.	1.0	0.25
	A1 Cell References – (Correct Alternative)		
	A2 Wordwrap :		
	A3 Pastespecial		
	A4 Queries :		
Objective Question		<u></u>	
88 88	Microsoft Excel automatically adjusts the cell reference when the formula is copied and paste into the rest of the cell locations in the column, this process is called	1.0	0.25
	A1 ABSOLUTE REFERENCES:		
	A2 CONSTANT REFERENCES:		
	A3 RELATIVE REFERENCES – (Correct Alternative)		
	A4 VARIABLE REFERENCES		
Objective Question			
89 89	Which type of section break is used when your document is set up with double sided printing and mirror margins?	1.0	0.25
	A1 : New page section breaks		
	A2 Odd page and Even page section breaks – (Correct Alternative)		
	A3 Next page section breaks		
	A4 Newspaper section breaks		
Objective Question			
90 90	Which of the following is a primary method of VLAN hopping? A) Switch spoofing B) Double tagging C) DNS spoofing	1.0	0.25
	A1 A & B – (Correct Alternative)		

		:		
		A2 A & C		
		A3 B & C		
		A4 only B		
	ctive Question			
91	91	is used where the company's telephone system meets its computer system with PBX.	1.0	0.25
		A1 Computer Telephony Integration – (Correct Alternative)		
		A2 Print server:		
		A3 Database :		
		A4 Network Controller :		
Object 92	etive Question 92	નીયેનામાંથી કયું સમાનાર્થી જોડકું યોગ્ય નથી?	1.0	0.25
		A1 - (Correct Alternative)		
		પ્રથમી-પાણી		
		A2 :		
		શોણિત-૨ક્ત		
		A3 :		
		તોખાર- અશ્વ		
		A4 :		
- • •		નિરામય-નીરોગી		
Object 93	93	સમજ'નો વિરોધી અર્થ આપતું વાક્ય જણાવો.	1.0	0.25
		A1 – (Correct Alternative)		
		તેનામાં હજુ અણસમજ છે.		
		A2 :		
		તેને ગેરસમજ થઇ લાગે છે.		
		A3 :		
		તે સાવ નાસમજ છે.		
		A4 :		
		તે વાત સમજી શકતો નથી.		
Object 94	94	લોહી' શબ્દ પર આધારીત કયો એક રુઢિપ્રયોગ નથી?	1.0	0.25
		A1 :		
		લોહી ઊકળવું		
		લાકા લાકળવું A2		

		લોહી પીવું		
		A3 - (Correct Alternative)		
		ે લોહી યઢાવવું		
		A4 .		
		લોહીનું પાણી થવું		
	ve Question 95		1.0	0.25
93	93	એક સાંધે ત્યાં તેર તૂટે' - કહેવતનો અર્થ આપેલા વિકલ્પમાંથી જણાવો.	1.0	0.23
		A1 .		
		ે. એક ટાંકો મારે ત્યાં તેર ટાંકા તૂટે		
		A2 - (Correct Alternative)		
		ે એક મુશ્કેલી ટળે ત્યાં બીજી દસ મુશ્કેલી પેદા થાય.		
		A3 .		
		ે. એક જગાએ સાંધે ત્યાં બીજી તેર જગ્યાએ તૂટે		
		A4 .		
		ે. એક જ સાંધાથી તેર મુશ્કેલી દૂર થાય		
	ve Question			
96	96	સમાન જણાતા આ શબ્દોમાંથી કોના અર્થ ખોટા છે? (1) અનુસારઃ તે મુજબ (2) અનુસ્વારઃ લિપિયિહ્ન (3) અનલઃ પવન (4) અનિલઃ અગ્નિ	1.0	0.25
		A1		
		ં (1) અને (2) ખોટાં અને (3) અને (4) સાયાં		
		A2 - (Correct Alternative)		
		: (1) અને (2) સાચાં અને (3) અને (4) ખોટાં		
		A3		
		: (1), (2), (3) અને (4) યારેય સાચાં		
		A4		
		: (1), (2), (3) અને (4) યારેય ખોટાં		
Objecti	ve Question	(1), (2), (3) ***********************************		
97	97	યોગ્ય દ્વિરુક્ત શબ્દ-જોડી ગોઠવો. કયા વિકલ્પમાં સાચી જોડી છે તે જણાવો.	1.0	0.25
		(1) કેટકેટલું (અ) ટપટપ ટપટપ (2) ભાગંભાગ (બ) પાણીબાણી		
		(3) ધરબર (ક) આટઆટલું (4) ધડધડ ધડધડ (ડ) વારંવાર		
		A1 :		
		(1)- (S), (2)-(S), (3)- (U), (4)-(U)		
		A2 :		
		(1)-(S), (2)-(S), (3)-(H), (4)-(H)		
		A3 – (Correct Alternative)		
		(1)- (5), (2)-(5), (3)- (여), (4)-(색)		
		A4 :		
		(1)-(4), (2)-(5), (3)-(4), (4)-(5)		
	ve Question 98		1.0	0.25
	, yo	આ બંને વાક્યો સાયાં છે કે ખોટાં? વિકલ્પ પસંદ કરીને જણાવો. 1. નાટકમાં ગોવર્ધન ગોપી બનીને નાયી. 2. ગામનાં બધાં કૂતરાં ભસતાં હતાં.	1.0	0.23
		A1		

		વાક્ય 1 અને વાક્ય 2 બંને સાયાં છે.		
		A2		
		: વાક્ય 1 અને વાક્ય 2 બંને ખોટાં છે.		
		વાકવા અન વાકવા આવે ખાટા છે. A3		
		વાક્ય 1 સાર્યું છે અને વાક્ય 2 ખોટું છે.		
		A4 - (Correct Alternative)		
		વાક્ય 1 ખોટું છે અને વાક્ય 2 સાચું છે.		
	ve Question 99	અમારે એક/ સારા વિજ્ઞાનના/ શિક્ષકની/ જરૂર છે. આ વાક્યમાં કયા ભાગમાં ભૂલ છે?	1.0	0.25
		જનાદ એક લાલ (વર્ષાએના (સલ્લેકના) ૧૯૧૯ છે. આ વાકવના કવા લાગના સૂત્ર છે:		
		A1 :		
		અમારે એક		
		A2 - (Correct Alternative)		
		સારા વિજ્ઞાનના		
		A3 .		
		શિક્ષકની		
		A4		
		: જરુર છે		
Objecti	ve Question			
100	100	માણસથી મનોરથ સેવાય છે.' આ વાક્યનું કર્તરિ વાક્ય વિકલ્પોમાંથી પસંદ કરો.	1.0	0.25
		A1		
		માણસથી મનોરથ સેવાતા હોય છે. A2		
		માણસથી મનોરથ સેવાશે		
		: - (Correct Alternative)		
		માણસ મનોરથ સેવે છે		
		A4 :		
		કર્તિરિ રયના શક્ય નથી		
	ve Question		1.0	0.25
	101	નીયેના વાક્યોના પ્રકાર જણાવો. 1. વિદ્વાનો અને વડીલો સાથે વાતો કરવાથી જ્ઞાન મળે છે.	1.0	0.23
		1. વિદ્વાનો અને વડીલો સાથે વાતો કરવાથી જ્ઞાન મળે છે. 2. જો શિક્ષક હા પાડે તો જ રજા મળે.		
		A1		
		: વાક્ય 1 અને વાક્ય 2 બંને સંયુક્ત વાક્યો છે.		
		વાક્ય 1 અને વાક્ય 2 ખને સંયુક્ત વાક્યા છે. A2		
		વાક્ય 1 અને વાક્ય 2 બંને સંકુલ વાક્યો છે. A3		
		A3 – (Correct Alternative)		
		વાક્ય 1 સાદું વાક્ય અને વાક્ય 2 સંકુલ વાક્ય છે.		
		A4 :		
		વાક્ય 1 સંયુક્ત અને વાક્ય 2 સંકુલ વાક્ય છે.		