A

→ संच क्रमांक

महाराष्ट्र रमापत्प आभ्रमात्रकी मेता (भुरम्) परीक्षा- २०१९ पत्रीक्षा गरे २४/१९/२०१९ U13

> प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका - II

स्थापत्य अभियांत्रिकी पेपर - 2

एकूण प्रश्न : 100 एकूण गुण : 200

वेळ : 2 (दोन) तास

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच वदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसस्ता बॉल्पेनने लिहावा.

परीक्षा-क्रमांक						
 	ूर्म केंद्राची संकेता	। अरे		-	शेव	 ांक

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉल्प्येन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण **एखादा प्रश्न कळीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळवे.** अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील".

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

1.	The areas enclose	ed by the contou	ırs <mark>i</mark> n a lake ar	e as follows:

Contour (m)

290 270 275 280 285

Area (m^2)

50 200 400 600 750

The volume of water between the contours 270 m and 290 m by trapezoidal formula

- (1) 6400 m^3
- (2) 8000 m^3
- 16000 m^3 (3)
- 24000 m^3 (4)

The R.L. of A is 98.75 m and the R.L. of B is 100.75 m. The horizontal distance between 2. A and B is 10.0 m. If the contour interval is 0.25 m, the distance of 99.00 m contour line from

- (1) $0.25 \, \mathrm{m}$
- (2) 1.25 m
- (3)2.0 m
- (4)2.5 m

3. When the height of signal is not the same as that of the height of instrument, then a correction applied for measurement is known as:

- (1) Curvature correction
- (2)Combined correction
- (3)Axis signal correction
- (4) Refraction correction

If h is the height above datum of the object, H be the flying height above datum and r be the 4. radial distance of the image of the object from principal point, then the relief displacement d is equal to:

- (1) $d = \frac{r \cdot h}{H}$ (2) $d = \frac{r \cdot H}{h}$ (3) $d = \frac{H \cdot h}{r}$ (4) $d = \frac{r}{H}$

5. In surveying optical square is used to setting out right angles. The horizon glass is placed at with the horizon sight and index glass is placed at an angle of an angle of ___ ___ with the index sight.

- (1) 30° and 15°
- (2)60° and 45°
- (3)90° and 75°
- (4)120° and 105°

If an upgrade of +1.4% joins another upgrade of +0.4% and rate of change of grade is 6. 0.1% per 20 m chain, then the length of vertical curve is :

- (1)200 m
- (2)360 m
- (3)400 m
- 80 m (4)

of ar	ctangular plot of l ea 5 cm². Calcul e from the map.	land o late R.	f area 0.45 hectare .F. of the scale of	is re the i	presented on a m nap. Draw a sca	ap by ile to	a similar rectangle read upto a single
 (1)	1:5000	(2)	1:8000	(3)	1:9000	(4)	1:3000

- 8. Two points A and B were fixed on opposite bank of a river. The level was setup near A and the staff readings on A and B were observed as 1.800 m and 1.300 m, respectively. Thereafter, level was setup near B and staff readings observed on B and A were found to be 0.350 m and 0.850 m, respectively. If the R.L. of A is 101.500 m, then R.L. of B is:
 - (1)102.0 m
- (2)101.0 m
- (3)100.0 m
- 100.450 m
- 9. The combined correction due to curvature and refraction in (m) for a distance of 2 kilometer is:
 - 0.224 m (1)
- (2)0.1346 m
- 0.1570 m (3)
- 0.1750 m (4)

- **10**. In tacheometric surveying:
 - The intercept of the staff is maximum when the staff is normal to the line of sight. (a)
 - (b) In the tangential system, the staff is kept normal to the line of sight.
 - (c) If a tacheometer is fitted with an anallatic lens, its additive constant is non zero.
 - It is more convenient to hold the staff normal to the line of sight than to hold it vertical. Select the incorrect statement/statements from the above.
 - (1)(a) only

- (a) and (b) only
- (a), (b) and (c) only (3)
- (4)(a), (b), (c) and (d) only
- 11. Generally how much amount is provided in estimate as work charged establishment?
 - (1)1 - 2%
- (2) $1 1\frac{1}{2}\%$ (3) $2 2\frac{1}{2}\%$
- In rate analysis procedure, by what % the wet volume of concrete is to be increased for 12. determining dry volume?
 - 20% (1)
- 30% (2)
- (3)52%
- (4)25%

13.	Capitalised value of a property fetching a net annual rent of ₹ 1,000 and highest rate of interest prevailing being 10% will be:									
	(1)	1,000	(2)	1,00,000	(3)	10,000	(4)	100		
14.	four		ed. The	total centre line			•	for each item from lated and for cross		
	(1)	½ breadth of	item at	each junction	(2)	1 full breadth	of item	at each junction		
	(3)	2 full breadth	of item	at each junction	(4)	no deduction	s			
15.	Whi	ich value is obta	ained by	dismantling the	buildi	ing ?				
	(1)	Book Value	(2)	Distress Value	(3)	Salvage Valu	e (4)	Scrap Value		
16.				imate design calc ty is called as :	ulatio	n, quantities of	work, r	ates and cost of the		
	(1)	Administrativ	ve appro	oval	(2)	Technical sar	ection			
	(3)	Expenditure	sanction		(4)	Official sanct	ion			
17.		ermine the capi rest is 5%.	tal sum	to be invested to	receiv	ve annual incon	ne of ₹1	lakh, if the rate of		
	(1)	₹ 50 lakh	(2)	₹ 20 lakh	(3)	₹ 100 lakh	(4)	₹ 10 lakh		
18.	Whi	ch of the follow	ving met	thods is also calle	d as c	out to out and i	n to in r	method ?		
	(1)	Long wall an	d short	wall method	(2)	Centre line m	nethod			
	(3)	Plinth area m	ethod		(4)	Cubic conten	t metho	d		
19.	Deta	ailed specificati	on for a	n item of P.C.C. (1:2:	4) should inclu	ıde follo	wing points:		
	(1)	Quantity of n	naterial,	cost of different	mater	ials, work cond	lition.			
	(2)	_		materials to be us ude, and mode o	_			onstruction method, t.		
	(3)	Work condition	ons at si	te, BIS requireme	nts, la	abour requirem	ent and	its cost.		
	(4)	Sources of ma	aterials,	instructions by P	WD, 1	labour requiren	nent.			

U13				•	•			A
20.	A lo	oad of 625 T is ir	nposed	on a footing of	size 2 1	n×2 m.		
	lf it	is to be assum	ed that	t, stress at dept	h "d" i	s spread out a	t an ang	gle of 2 vertical to
	1 ho	orizontal, find ou	it the d	epth 'd' at which	n the in	tensity of stress	will be	$\left(\frac{1}{9}\right)^{th}$ of the stres
	at g	round level.						
	Cho	ose correct dept	h in m	etres from the fo	ollowin	g :		
	(1)	2 m	(2)	3 m	(3)	4 m	(4)	5 m
21.	An	embankment ir	clayey	y soil of 5 m he	ight is	to be construc	ted usi	ng factor of safet
	of 2	.5. It is to be as	sumed	that stability nu	mber is	$s = \frac{1}{45}$ and unit v	weight o	of soil is 18 kN/m ³
	Find	the minimum	cohesiv	e strength (in kN	N/m^2)	which the soil s	hould h	ave.
	Cho	ose correc t answ	ver froi	m the following	:			
	(1)	30	(2)	5	(3)	10	(4)	15
22.	dep		l to be					m×0.3 m on sand
	(1)	200 kN/m^2	(2)	1000 kN/m^2	(3)	500 kN/m^2	(4)	2000 kN/m^2
23.	The	re were five inta	ict piec	es of rocks of le	ngths 1	50 mm, 200 mr	n <i>, 7</i> 5 m	0 m in rocky strata m, 50 mm, and 20 de rock sample is :
	(1)	55.0%	(2)	67.5%	(3)	62.5%	(4)	40.0%
24.				nple is 0.4. Usin pressure at rest in			the esti	mated value of the
	(1)	0.5	(2)	0.7	(3)	0.3	(4)	1.0
25.				oduces a stress distance will be		N/m² at a dept	h of 1 n	n, then the stress a

(2) 80 kN/m^2 (3) 40 kN/m^2 (4) 10 kN/m^2

(1) 20 kN/m^2

26.

Amount of compaction greatly affects:

	(1)	Water conten	t and M	aximum dry de	ensity			
	(2)	Saturation of	soil					
	(3)	None of the a	bove					
	(4)	All of the abo	ove					
27.	pure	ely cohesive soi	l having	uniform cohes	ion of 5	0 kN/sq. m up	to 10 m	It is embedded in depth. If adhesion on component will
	(1)	500 kN	(2)	125 kN	(3)	250 kN	(4)	200 kN
28.				ssion test a soil 00 mm², then th				cross-sectional area
	(1)	75 kN/m ²	(2)	375 kN/m^2	(3)	133 kN/m ²	(4)	37.5 kN/m^2
29.		allel. If the frict						eter and length, in arge in M to that of
	(1)	0.50	(2)	0.25	(3)	2.0	(4)	4.0
30.	Bern	noulli's equation	n is deri	ved making ass	umptio	ns that :	, , , , , , , , , , , , , , , , , , ,	
	(1)	The flow is u	niform a	and incompress	ible.			
	(2)	The flow is n	on-visco	ous, uniform an	d steady	y.		
	(3)	The flow is s	teady, n	on-viscous, inco	mpress	ible and irrotat	ional.	
	(4)	None of the a	above.					
31.	the a							be 3% in excess of head, the measured
	(1)	3% excess	(2)	2% less	(3)	2% excess	(4)	1.5% excess
			· · · · · · · · · · · · · · · · · · ·					
कळ	या का	मासाठी जागा/SI	PACE FO	OR ROUGH W	ORK			P.T.O.

32.		nitorm body 3 i 60 m, then the				deep	iloats in water	. If the c	lepth of immersion
	(1)	3.53 kN				(3)	35 31 kN	ŕ	
33.	For		through		ipe, th	เค เทลx			l to
	(1)	1.5 times the	average	velocity	(2)	2.0 t	imes the avera	ge veloc	ity
	(3)	2.5 times the	average	velocity	(4)	Non	e of the above		
34.	Coe	fficient of cont	raction is	s the ratio c	of:				
	(1)	actual velocit	ty of jet	at Vena cor	ntracta	to the	theoretical ve	elocity.	
	(2)	loss of head i	in the or	ifice to the	head o	of wate	er available at	the exit	of the orifice.
	(3)	actual discha	rge thro	ugh an orif	fice to	the th	eoretical disch	arge.	
	(4)	area of jet at	Vena co	ntracta to t	the are	ea of o	rifice.		
35.		del analysis o	of aerop	lanes and	proje	ectile			ic speed is based
	(1)	Reynold Nur	nber		(2)	Frou	de Number		
	(3)	Mach Numb	er		(4)	Eulo	r Number		
36.	A d	imensionless g	roup for	med with v	ariable	es :			
		nass density), ¡ ;th) is :	ı (dynan	mic viscosit	y), g (gravit	ntional acceler	ation) ar	nd D (characteristic
	(1)	D ³ / ₂ /ρμg	(2)	μ/ ρg ¹ 2 [) ³ / ₂	(3)	$\frac{\mu}{\rho g D^{3} 2}$	(4)	$\rho^{1/2} Dg^{1/2}$
 37.		/ρμg rectangular ch	··						

(1) F_o

(2) $F_0^{\frac{1}{2}}$ (3) $F_0^{\frac{3}{2}}$ (4) $F_0^{\frac{2}{3}}$

(1) 0° (2) 90° (3) 135° (4) 180° 39. An air vessel in the delivery side of a reciprocating pump: (1) maintains steady discharge output. (2) prevents cavitation in the system. (3) enables suction head to be increased. (4) enables the pump to run at higher speed. 40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) L ³ / ₄ T ⁻³ / ₂ (2) M ⁰ L ⁰ T ⁰ (3) M ⁻¹ / ₂ L ¹ / ₂ T ⁻¹ / ₄ (4) L ³ / ₄ T ⁻¹ / ₂ 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (iv) (iii) (2) (iv) (ii) (iii) (iii) (3) (iv) (i) (iii) (iii)	38.	In a reciprocating pump without air vessel, the friction head in the delivery pipe is maximum at the crank angle θ =?											
(1) maintains steady discharge output. (2) prevents cavitation in the system. (3) enables suction head to be increased. (4) enables the pump to run at higher speed. 40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) L ³ / ₄ T ⁻³ / ₂ (2) M ⁰ L ⁰ T ⁰ (3) M ⁻¹ / ₂ L ¹ / ₂ T ⁻¹ / ₄ (4) L ³ / ₄ T ⁻¹ / ₂ 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (iii)				_, _,	0		90°			(3)	135°	(4)	180°
(2) prevents cavitation in the system. (3) enables suction head to be increased. (4) enables the pump to run at higher speed. 40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) \(\frac{1}{2}\frac{4}{4}\)\(\frac{1}{2}\frac{1}{2}\)\(\frac{1}{2	3 9.	An a	air ves	sel in	the d	eliver	y side o	of a r	ecipro	ocatin	g pump :		
(3) enables suction head to be increased. (4) enables the pump to run at higher speed. 40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) \(\frac{1}{2}\sqrt{4}\)\(\frac{1}{7}\)\(\frac{1}{2}\)\(\fr		(1)	mair	ntains	stead	y disc	charge	outp	ut.				
(4) enables the pump to run at higher speed. 40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) L ³ / ₄ T ⁻³ / ₂ (2) M ⁰ L ⁰ T ⁰ (3) M ^{-1/2} L ^{1/2} T ^{-1/4} (4) L ^{3/4} T ^{-1/2} 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iiii) (ii)		(2)	prev	ents o	cavitat	ion ir	ı the sy	stem	l .				
 40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) L³/4 T⁻³/2 (2) M⁰ L⁰ T⁰ (3) M^{-1/2} L^{1/2} T^{-1/4} (4) L³/4 T^{-1/2} 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i) 		(3)	enab	les sı	ıction	head	to be in	ncrea	ised.				
the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) L³/4 T³/2 (2) M⁰ L⁰ T⁰ (3) M³/2 L¹/2 T³/4 (4) L³/4 T³/2 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iiii) (i)		(4)	enab	les th	ne pun	np to	run at l	highe	er spe	ed.			
(3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) L ³ / ₄ T ⁻³ / ₂ (2) M ⁰ L ⁰ T ⁰ (3) M ^{-1/2} L ^{1/2} T ^{-1/4} (4) L ³ / ₄ T ^{-1/2} 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (b) Reservoir plant (ii) Large storage (b) Reservoir plant (iii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iiii) (i)	40.				~	proca	ting pu	mp,	there	will b	e no flow in	to or from	the air valve, wher
41. The specific speed of a centrifugal pump has the dimensions of: (1) L ³ /4 T ⁻³ /2 (2) M ⁰ L ⁰ T ⁰ (3) M ^{-1/2} L ^{1/2} T ^{-1/4} (4) L ³ /4 T ^{-1/2} 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (iii) (2) (iv) (ii) (iii) (i)		(1)	39° 3	32' an	d 140°	28′			(2)	39° (32 to 140° 28	3'	
(1) L/4 T / 2 (2) M ⁰ L ⁰ T ⁰ (3) M - 1/2 L 1/2 T - 1/4 (4) L 3/4 T - 1/2 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (iii) (2) (iv) (ii) (iiii) (i)		(3)	0° to	39° 3	32'				(4)	18°	34' to 161° 2	6'	
(3) M ^{-1/2} L ^{1/2} T ^{-1/4} (4) L ^{3/4} T ^{-1/2} 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)	41.	The	specif	ic spe	eed of	a cen	trifugal	pun	np has	s the o	limensions o	of:	
42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(1)	L ³ /4	$T^{-3/2}$					(2)	M^0	$L^0 T^0$		
(1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(3)	M ⁻¹	½ L/2	$(2 T^{-1/4})$				(4)	$L^{\frac{3}{4}}$	$T^{-1/2}$		
43. Match the pair : (a) Run of river plant (b) Reservoir plant (c) Pumped storage plant (d) Tidal plant (ii) Water pumped back to the head water tank (iii) Sea water (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)	42.	The	work	saveo	d by fi	tting a	an air v	essel	to a	doubl	e acting reci	procating 1	oump is :
(a) Run of river plant (b) Reservoir plant (c) Pumped storage plant (d) Tidal plant (ii) Water pumped back to the head water tank (iii) Sea water (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(1)	39.2	%	•	(2)	84.89	6		(3)	48.8%	(4)	92.3%
(b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)	43.	Mat	ch the	pair	:							***	
(c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(a)	Run	of riv	ver pla	ınt		(i)	Larg	ge stor	rage		
(c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(b)	Rese	rvoir	plant			(ii)	Wat	er pu	mped back t	o the head	l water tank
(d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(c)	Pum	iped :	storage	e plar	ıt		Sea	water	•		
Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)						-		(iv)	No:	storag	e		
(1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)				_				, ,					
(1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)			(a)	(b)	(c)	(d)							
(2) (iv) (ii) (iii) (i)		(1)											
					•								
					, ,								

(4) (iv) (iii) (i)

(ii)

44.	Kap	plan turbine is a propeller turbine in which	n which the vanes fixed on the hub are:					
	(1)	non-adjustable (2)	adjustable					
	(3)	fixed (4)	none of the above					
45.	is 4		g reciprocating pump is 200 mm and its stroke The theoretical discharge for pump in					
	(1)	0.01256 (2) 12.56	(3) 1.256 (4) 0.1256					
46.	Whi	nich of the following statement is correct?						
	(1)	Centrifugal pump convert hydraulic en	ergy into mechanical energy.					
	(2)	Reciprocating pumps convert mechanic centrifugal force.	cal energy into hydraulic energy by means of					
	(3)	Centrifugal pumps convert mechanica centrifugal force.	l energy into hydraulic energy by means of					
	(4)	Reciprocating pumps convert hydraulic	energy into mechanical energy.					
47 .	The	e design flood commonly adopted in India	for spillways of major projects is the :					
	(1)	Standard Project Flood. (2)	Flood with a Return Period of 100 years.					
	(3)	Probable Maximum Flood. (4)	Flood with a Return Period of 10,000 years.					
48.	The	e Thiessen polygon is :						
	(1)	a polygon obtained by joining adjoining	g raingauge station.					
	(2)	a representative area used for weighing	the observed station precipitation.					
	(3)	an area used in the construction of dep	th-area curve.					
	(4)	the descriptive term for the shape of hy	drograph.					
49.		a flow-mass curve study, the demand line d	rawn from a ridge in the curve did not intersect					
	(1)	the reservoir was not full at the beginni	ng.					
	(2)	the storage was not adequate.						
	(3)	the demand cannot be met by the inflov	v as the reservoir will not refill.					
	(4)	the reservoir is wasting water by spill.						

- 50. An instantaneous unit hydrograph is a direct run-off hydrograph :
 - (1) of 1 cm magnitude due to a rainfall excess of 1 h duration.
 - (2) that occurs instantaneously due to a unit rainfall excess of duration 'D' h.
 - (3) of unit rainfall excess precipitating instantaneously over the catchment.
 - (4) occurring at any instant in a long storm.
- 51. Evaporation losses from surface of a reservoir can be reduced by sprinkling:
 - (1) DDT

- (2) Acetyl alcohol
- (3) Potassium permanganate
- (4) None of the above
- 52. Dalton's law is given as:
 - (1) $E_L = C[e_s + e_a]$

(2) $E_L = C[e_a - e_s]$

 $(3) \quad E_L = C[e_s - e_a]$

- (4) $E_L = C[e_s + e_w]$
- 53. Direct run-off is made up of:
 - (1) Surface run-off, prompt interflow and channel precipitation.
 - (2) Surface run-off, infiltration and evapotranspiration.
 - (3) Overland flow only.
 - (4) Rainfall and Evaporation.
- **54.** The Rainfall Intensity of Light Rain is:
 - (1) Upto 2.5 mm/Hz

(2) Upto 3.0 mm/Hz

(3) Upto 5.00 mm/Hz

- (4) Upto 7.5 mm/Hz
- 55. A plot between rainfall intensity versus time is called as:
 - (1) hydrograph
- (2) mass curve
- (3) hyetograph
- (4) isohyet
- **56.** Which of the following is known as 'feeding bottle technique'?
 - (1) Drip Irrigation

(2) Sprinkler Irrigation

(3) Furrow Method

(4) None of the Above

57.	This type of dam requires strong abutment:												
	(1)	Gravity	(2)	Buttress		(3)	Arch	(4)	All above				
58.		en that the bas cumec, the deptl	-		-	and t	the duty of t	the canal	is 1000 hectares				
	(1)	0.864 cm	(2)	8.64 cm		(3)	86.4 cm	(4)	864 cm				
59.	In B	ligh Creep Theor	ry [L/]	H] is called	as:								
	(1)	Creep Length			(2)	Нус	draulic Gradie	nt					
	(3)	Coefficient of (Creep		(4)	Pero	colation Coeff	icient					
60.	For is:	the upstream fac	ce of a	n earthen c	dam, t	he mo	ost adverse co	ndition fo	r stability of slope				
	(1)	sudden drawd	lown		(2)	stea	dy seepage						
	(3)	during constru	ıction		(4)	slou	ghing of slope	<u>S</u>					
61.	Mea	n Water Trainin	g mea	ns :			······································						
	(1)	Training for di	ischarg	ge ge	(2)	Trai	ning for deptl	h					
	(3)	Training for se	dimen	t	(4)	Trai	ning for flood						
62.	_	pillway, when the iff rock, which c		-			•		er bed is composed erred ?				
	(1)	Solid roller bud	cket		(2)	Slot	ted roller buck	ket					
	(3)	Ski jump buck	et		(4)	Still	ing basin						
63.	The	main cause of m	neande	ring is :									
	(1)	presence of an	excess	ive bed sloj	pe in t	he riv	er.						
	(2)	(2) degradation.											
	(3) the extra turbulence generated by the excess of river sediment during floods.												
	(4) none of the above.												
								·					

- **64.** Lacey gave V Q f relation as:
 - $(1) \qquad V = \left\lceil \frac{Qf^2}{160} \right\rceil^{\frac{1}{4}}$

 $(2) \qquad V = \left[\frac{Qf^2}{140}\right]^{\frac{1}{6}}$

 $(3) \qquad V = \left\lceil \frac{fQ^2}{160} \right\rceil^{\frac{1}{4}}$

- $(4) \qquad V = \left\lceil \frac{Qf}{140} \right\rceil^{\frac{1}{6}}$
- 65. Which of the following method is recommended by I.R.C. for design of flexible pavement?
 - (1) Group index method
- (2) Westergaard method

(3) CBR method

- (4) None of these
- 66. In case of pavement design:

Match the List - I (Type of carriageway) with List - II (Lane distribution factor) :

List - I

List - II

- (a) Undivided roads with two lane carriageway
- (i) 0.75
- (b) Undivided roads with single lane carriageway
- (ii) 1.0
- (c) Divided carriageway with four lanes each
- (iii) 0.45
- (d) Undivided roads with four lane carriageway
- (iv) 0.40

Answer Options:

- (a) (b) (c) (d)
- (1) (ii) (i) (iv) (iii)
- (2) (i) (ii) (iii) (iv)
- (3) (iii) (iv) (i) (ii)
- (4) (iv) (iii) (ii) (i)
- 67. As per current Viscosity Graded (VG) bitumen specifications in India (IS 73 : 2006, Third revision) the Absolute Viscosity of bitumen using vacuum capillary tube viscometer is determined at ______ temperature.
 - (1) 135°C
- (2) 25°C
- (3) 27°C
- (4) 60°C

- (b) Ductility test on bitumen is carried out at 27°C.
- (c) In softening point test on bitumen, rate of increase of temperature is 2°C per minute.
- (d) The rate of pulling of standard briquette mould specimen in ductility test is 15 mm per minute.

Answer Options:

- (1) (a) only
- (2) (b) only
- (3) (c) only
- (4) (a) and (d) only

71. The free mean speed on a roadway is found to be 70 kmph. Under stopped condition the average spacing between vehicles is 5.0 m. The capacity flow is:

- (1) 3500 vehicles/hour/lane
- (2) 3700 vehicles/hour/lane
- (3) 3200 vehicles/hour/lane
- (4) 3000 vehicles/hour/lane

72.		R' is the radio percentage) is e		rvature o	of a hil	ll roa	d, the maxi	imum gra	de compe	nsation
	(1)	65/R	(2)	75/R		(3)	85/R	(4)	95/R	
73.		n particular case ntroduced on t		• •						
	(1)	0.75%	(2)	1.3%		(3)	2.7%	(4)	3.25%	
74.		ase of erection arted from	-			_	_	about centi	e line, the	erection
	(1)	Left end			(2)	Both	ends			
	(3)	Right end			(4)	Non	e of the abov	ve		
75.		ne nature of riven as :	ver is at	a moderat	te bent	cond	ition then m	aximum V	depth of	scour is
	(1)	1.25 D	(2)	1.75 D		(3)	1.5 D	(4)	2 D	
76.	The	effective span	for main	girder in	case of	bridg	es is :			
	(1)	the distance	between	centres of	main g	girder	S.			
	(2)	the distance	between	centres of	cross g	girders	6.			
	(3)	the distance	between	centres of	road b	earing	gs.			
	(4)	the distance	between	centres of	bearin	g plat	es.			
77.	In w	which of the fol	lowing t	ype of Abu	ıtment:	s, win	g walIs are r	not provide	ed :	
	(1)	Gravity Abu	tments	-	(2)	U -	Abutments	_		
	(3)	Tee - Abutme	ents		(4)	Abu	tment Pier			
78.		le designing h be assumed to							l moving li	ve load
	(1)	1.0 m	(2)	1.2 m		(3)	1.5 m	(4)	1.75 m	

79.		As per IRC recommendations the minimum straight length of approaches on either side of the bridge should be											
	(1)	15 m	(2)	20 m		(3)	25 m	(4)	30 m				
80.		IRC Class A loa			ose to t	ail sp	acing betwee	n two suc	cessive trains shall				
	(1)	12.5 m	(2)	15.5 m		(3)	17.5 m	(4)	18.5 m				
81.		width of carriag		-				each lane	meaning the width				
	(1)	Class A	(2)	Class B		(3)	Class C	(4)	Class 70 R				
82.	The	effective linear	waterw	ay in mete	ers is gi	ven b	y :	42					
	(1)	$L = 0.75 \text{ V}^2$			(2)	L=	C√Q						
	(3)	$L = 1.811 \text{C} \sqrt{\zeta}$	Q		(4)	L = 0	CQ ²						
83.		ich of the follow	ving is	not a pate	nted e	xplosi	ve available	in the ma	rket for tunnelling				
	(1)	PENT	(2)	RDX		(3)	TNT	(4)	NTT				
84.	Wh	ich shape of tun	nel is sı	uitable for	the pu	rpose	of navigation	?					
	(1)	Circular Shap	e		(2)	D SI	hape						
	(3)	Horse-shoe Sh	nape		(4)	Rect	angular Sha _l	oe .					
85.		ich of the follow nelling method		thod of tur	nnelling	g is be	ing gradually	replaced	by compressed air				
	(1)	Needle beam	method		(2)	Belg	ian method						
	(3)	Heading and	Bench 1	nethod	(4)	Fore	poling metho	od					

86.	Which section of tunnel is also known as segmental root section tunnel?									
	(1)	D section	(2)	Egg Shaped Section						
	(3)	Circular section	(4)	Rectangular Section						
87.	Which one of the following methods of tunnelling is used in hard rocks?									
	(1) Fore poling method		(2)	Needle beam method						
	(3)	Heading and Benching method	(4)	Shield tunnelling method						
88.	With reference to tunnelling which of the following factors, are to be considered for deciding the size of the shaft:									
	(1) System used for hoisting		(2)	Size of the muck car						
	(3)	Quantity of muck to be lifted	(4)	Eventual use of the shaft						
89.	The tunnelling method that is not suitable in case of soft soil is :									
	(1) Needle beam method		(2)	Full face method						
	(3)	Fore poling method	(4)	Liner plate method						
90.		The procedure of removal of rock protrusions by hammering immediately after the blasting is known as :								
	(1)	Mucking (2) Skimming	5	(3) Trimming (4) Scaling						
- 91.	Which one of the following Drift method is time consuming but provides good ventilation?									
	(1)	(1) Top Drift Method		Bottom Drift Method						
	(3)	Centre Drift Method	(4)	Side Drift Method						
92.		If the sewer is to be designed for the non-scouring velocity of 5 m/sec, which among the following material would you recommend?								
	(1)	(1) Cast iron sewer		Glazed brick sewer						
	(3)	Stone ware sewer	(4)	Cement concrete sewer						

93.	Sele in w	nit and ir	npurities removed,								
	(a)	Grit chamber - Sand, silt									
	(b)	Aeration tank - Suspended impurities									
	(c)	Skimming tank - Fat and Grease									
	(d)	Screen	- CI	oth, paper							
	Ans	wer Options :									
	(1)	(b) and (c)	(2)	(a) and (c)	(3)	Only (c)	(4)	Only (b)		
94.	Carbon monoxide is considered as most poisonous gas in Urban areas because :										
	(1)	1) It causes loss of sense of smell.									
	(2)	It is carcinogenic in nature.									
	(3)) It reduces oxygen carrying capacity of blood.									
	(4)	It may cause co	njunc	tivitis.							
95.	The ideal pathogenic indicator used for bacterial analysis of water is exhibited by the organism:										
	(1)	Escherichia coli			(2)	Enta	moeba histoly	tica			
	(3)	Salmonella typh	i		(4)	Vibr	o comma				
96.	In water treatment process, aeration of water is carried out to :										
	(1)	(1) remove hardness and chlorides from water.									
	(2)	add calcium and magnesium to water.									
	(3)	remove gases like carbon dioxide, hydrogen sulfide and to add oxygen to water.									
	(4)	remove oxygen from water and to add carbon dioxide to impart test and odour to water.									
		प्रा माठी जागा/SPA/		ND DOLLCI		D <i>V</i>					

97.	The unit in which both sedimentation and digestion take place simultaneously is the:									
	(1)	Detritus tank		((2)	Imh	off tank			
	(3)	Skimming tan	k	•	(4)	Clar	ifier			
98.	The sag in the dissolved oxygen curve results because of DO is a function of :									
	(1)	Both addition and depletion of oxygen from the stream.								
	(2)	The rate of addition of oxygen to the solution.								
	(3)	The rate of addition of oxygen is linear, but not that of depletion.								
	(4)	(4) The rate of organic substances introduced in the process.								
99.	Alu	Alum as a coagulant is found to be effective between pH range of								
	(1)	8.0 to 10.0	(2)	8.5 to 10.5		(3)	6.5 to 8.5	(4)	7.0 to 9.0	
100.	In an oxidation pond, the sewage is made non-putrescible primarily by :									
	(1)	(1) Algae bacteria symbiosis only.								
	(2)	Bacterial oxidation only.								
	(3)	Chemical oxidation only.								
	(4)	(4) Algae photosynthesis and algae bacteria symbiosis.								

- o 0 o -

सूचना — (पृष्ठ 1 वरून पुढे...)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे. असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना	प्रश्न
-------	--------

Pick out the correct word to fill in the blank :	
--	--

Q. No. 201. I congratulate you _____ your grand success

(1) for

(2) at

(3) on

(4) about

ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखिवणे आवश्यक आहे.

प्र. क. 201. 1 2 4

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तर क्रमांक हा तुम्हाला स्वतंत्ररोत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.