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Note : (i) This question paper has two sections ‘A" und *B’. Every section has four
questions, attempt any five questions. At least twe gquestions should be from
every section.
(ii) All questions carry equal marks.
(tii) All the parts of a question must be answered together.

(tv)  Only non-programmable calculators are allowed.
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Let V be the vector space of n »x n matrices over the field F, and let B be a fixed
n % f matrix and T(A) is defined as T(A) = AB — BA, then prove that T is a
linear transformation from V into V.
niZ
Evaluatle the integral J sin™0 cos™® dO using Beta and Gamma functions and
0

prove that F ] [-n = sinﬂn:rt'
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Find the equation of the plane which passes through the line of intersection of the
planes 2x — y =0, 3z — y = 0 and is perpendicular to the plane 4x + 5y — 3z =8,

Find the equations of the planes which contain the line Tx + 10y = 30,
Sy — 3z = 0 and touch the ellipsoid 7x%+ 5y% + 372 = 60.
Solve the differential equation
(DY~ D?— 6D) y =2 + | where D =~
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Verify the formula a x (6% 2)=(3-3) 8- (32-8) ¢,
whereg=T—2?+£,E=2?+?+£ﬁndE=?+2T—£.

A . i , . = A A T x d?
If 1 be the unit vector in the direction of r, then prove that r x dr = 2

Six equal rods AB, BC, CD, DE, EF, FA (each of weight W) are freely jointed at
their extremities so as to form a hexagon; the rod AB is fixed in a honzontal
position and the middle points of AB and DE are jointed by a string. Prove that
the tension in the string is 3W.
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Prove that for a particle, sliding down the arc and starting from the cusp of a
smooth cycloid whose vertex is lowest, the vertical velocity is maximum when it
has described half the vertical height.

The inclinations of the axis of g submerged solid cireular cylinder to the vertical

in two different positions are 6 and 90° — 8. If P and P’ be the difference between
the pressures on the two ends in the two cases, prove that the weight of the

displaced liquid is equal to 4/p® + p'2.
OR

1A, is the curl of a covartant vector prove that A, Agi Ay =0
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Prove that the function f{z) = u + iv = il :é +:_:;2( ) when z # 0 and

f{0) = 0 is continuous at the origin and that Cauchy-Riemann equations are
satisfied there, vet f'(z) does not exist there.

vz (xX—v2) = y . i
Show that u = R+ (Rt yR and w = i are the possible velocity

components of a liquid motion along the axes of x, yand z.
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Prove that & ring R i3 without zero divisors iff the cancellation laws of
multiplication hold in R.

By applying Newton-Raphson method twice, find the real root {upto 2 places of
decimal) near 2 of the equation x* — 12x + 7 = 0.
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Solve by Charpit’s method p( 1 +g%) + (b— 2) g = 0, where b is a constant.
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Show that theminimum valueotu=x-y+ S ? is 3al,
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Discuss the convergence or divergence of the integral J‘ m_dx where m, n

0
are positive integers.

Find the momenl of mnertia of a thin uniform rod about an axis passing through
its centre of gravity and perpendicular to its length.



