CEA

Sl. No. :	10000321
-----------	----------

	C ,	V C	W.A. (
Register Number			

2017 GEOLOGY (Degree Standard)

Time Allowed: 3 Hours

[Maximum Marks: 300

CEOHC/17

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 10 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination it will not be replaced.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Invigilator to mark the answers.
- 6. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination.

 After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 11. Do not tick-mark or mark the answers in the Question Booklet.
- 12. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

to marini

(A)	1.7		2.7	
(C)	3.7	(D)	4.7	
(0)		(-)		
The	most generally used method for	the geograph	ical location of distant	epicentres is the
(A)	one circle method	(B)	two circle method	
V	three circle method	(D)	four circle method	•
The	region of most violent earthqual	kes that lie in	circum-pacific belt is	
(A)	Himalayan region	(B)	Burma	
(C)	Northern Africa		Indonesian Archipela	1 2 0
(0)	2 104 VIIV 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~ /		
	em-arid regions, capillary actio		bearing waters to the	e surface, where
	oration, a lime-rich deposit is fo	•	D:11	
(A)	Stalactite	(B)	Pillars _	
(C)	Kankar	(D)	Travertine	
The calle	zone that extends from the low	tide mark or	line to the edge of th	e continental shelf
(A)	Littoral	(D)	Neritic	
(C)	Bathyal	(D)	Abyssal	•
m	1 :111111	mada um af a	agantially havigants! 1	avared wash weeds
	small, isolated erosional feature cream is known as	, made up of e	eschwany norizontal i	zyeteu tock produc
hv et	A COMPANIE AND ADDRESS AND ADD		Butte	
-	Mesa	- /		
(A)	Mesa	(D)	Chesta	
-	Mesa Hoghack	(D)	Cuesta	
(A)		(D)	Cuesta	
(A) (C)				arthly matter by
(A) (C)	Hoghack impact of wind itself is sufficient			arthly matter by

8.	Dian	ond deposits of Panna belong to ———	- series.		
	(A)	Bhander series	T	Rewah series	
	(C)	Kaimur series	(D)	Semri series	
9.	Foss	iliferous marine rocks of Umaria belong	to		
.	(A)	▲ Cenozoic	(B)	Mesozoic	
	G	Palaeozoic	(D)	Proterozoic	
10.	Agni	gundala Cu-Pb-Zn deposits belong to			
10.	(A)	Papaghni series	(B)	Cheyair series	
	VC)	Nallamalai series	(D)	Kistna series	
11.	Talcl	nir boulder beds are of			
	(A)	Marine origin	(B)	Lacustrine origin	
	(C)	Marginal-marine origin	0	Fluvio-glacial origin	
				•	
12.	The (Cuddapah basin is formed in the form o	f		
	(A)	Hairpin shape	(B)	Barchans shape	
	(C)	Pedestal shape	D	Crescent shape	
13.	· Give	the Lithology for Niniyur stage			
	(A)	mostly sand and clay			
	(B)	sand stone, clay and shelly limestone			
	(C)	sand and clay with basal limestone	•		
	D	white sandy limestone and sandstone			
14.	Gond	lwana deposits are not found in			
		Ganga basin	(B)	Damodar basin	
	(C)	Godavari basin	(D)	Mahanadhi basin	

15.	Cho	oose the odd one among the following		
	(A)	Sriperumbudur beds	(B)	Satyavedu beds
	(C)	Sivaganga beds	D)	Tabbowa beds
16.	Fine	d out the mineral deposit which is not g	eneral	ly related to Archean age
	(A)	Manganese	(B)	Gold
		Celestite	(D)	Copper
			(-)	- Copper
17.	Coo	logical ago of Dagnalla shale is	معدر	
11.		logical age of Daonella shale is Lower Triassic	*!. • • • • • • • • • • • • • • • • • • •) () () () () () ()
	(A)		(D)	Middle Triassic
	· (C)	Upper Triassic	(D)	Lower Jurassic
18.	: —	is entirely devoid of life forms.	•	
	4	Azoic	(B)	Proterozoic
	(C)	Palaeozoic	(D)	Mesozoic
19.	Tiro	han breccia of semri series is a		
	(A)	Sandstone	0	Limestone
	(C)	Mudstone	(D)	Claystone
20.	The	main source of diamond in Kurnool forn	nation	. ia
20.	· M	Banganapalli sandstone		
	(())	Pinnacled quartzites	(B)	Auk shales
•	(C)	r innacieu quartzites	(D)	Koilkuntla limestone
	•			
21.	An ii	ncrease in the continuing (or) lithostation	press	sure causes
	(1)	a decrease in the volume of rocks		
•	(2)	an increase in the density of the rock		
	A	Statements (1) and (2) are correct	-	
-	(B)	Statement (1) is correct and statemen	t (9) is	incorrect
	(C)	Statement (1) is incorrect and statement	٠٠.	
	(D)	Statement (1) and (2) are incorrect	J1103 (Z	y to correct
	(D)	Diatement (1) and (2) are incorrect		

29.	Grap	tolite belongs to the	- phylum.	
	(A)	Protozoa	(B)	Mollusca
	0	Hemichordata	(D)	Brachipoda
30.	Glob	igerina ooze is composed of		
	(A)	Siliceous tests	(B)	Chitinous tests
	0	Calcareous tests	(D)	Agglutinated tests
31.	Crin	pidea belong to	-	
•	(A)	Trilobita		Echinodermata
	(C)	Mollusca	(D)	Graptolites
32 .	The j	pelecypod having two similar teet	h and socke	t is termed as
	(A)	Taxodont	(0)	Isodont
	(C)	Heterodont	(D)	Cyclodont
33.	Brac	hiopods, whose valves can held to	gether by m	uscles and mantle are grouped under
•	(A)	Articulata		Inarticulata
	(C)	Palaeotremata	(D)	Neotremata
	r - 1			
34.	Whic	h of the following Trilobita is eyel	less?	
	(A)	Olenellus	(B)	Calymene
	C	Harpes	(D)	Isotelus
	•			
35.	Grap	tolites are dominantly present du	ring	
	(A)	Cenozoic	(B)	Mesozoic
	· (C)	Palaeozoic	(D)	Proterozoic

36.	The	two values of Articulata brachlopo	da are unit	ed Alth one another group are
•	(A)	Anterior margin	(B)	Pedicle opening
	(C)	Suture lines	•	Cardinal margin
		,		•
37.	Brac	chiopods are	· ·	
	(A)	. Planktons	(B)	Nectons
	40	Bottom-dwelling bivalves	(D)	Freshwater organisms
	•	•	•	
38.	Whi	ch trilobite has two thoracic segme	ents?	
	(A)	Olenellida	(B)	Opisthoparia
	(C)	Proparia	(5)	Agnostida
			. •	
39.	A lir	ne which connects the eye and Pos	terior-Ante	rior margin of Cephalon is
	(Á)	Eye line	(B)	Thorax
	4	Facial suture	(D)	Glabellar grooves
	_			
40 .	Whi	ich one of the fossil groups is in co	rrect groupi	ng of pelecypods?
	(A)	Spondylus, Arca, Murex, Acant		
•	(B)	Arca, Spondylus, Meretrix, Trig	gonia	
	(C)	Fusus, Acanthoceras, Trigonia,	Nantilus	
	(D)	Pecten, Nautilus, Leratite, Par	adoxide	
41.	The	forms of normal class of isometric	system wi	ll have
		9 planes of symmetry	(B)	6 planes of symmetry
	(C)	3 planes of symmetry	(D)	1 plane of symmetry
42 .	In r	normal class of Tetragonal system,	the four fo	ld axis of symmetry is
	(A)	Horizontal	(B)	Inclined
-	(C)	Diagonal		Vertical
	. ,			•

Match the following: 43.

	_
(a)	Stend
141	L D Lettill

1. 32 classes

- Rome del'isle (b)
- 2. 14 lattices

(c) **Bravais** 3. interfacial angle

(d) Hessel

contact goniometer 4.

(a)

- (c)

- 2

- 2

- (C)
- 2

(b)

4

3

- (D) · 2
- 3

(d)

1

3

4

In orthorhombic system, the prismatic faces intersecting the macro-axis and parallel to the 44. other two axes are named as,

(B) Macro pinacoid

(C) Basal pinacoid

- (D) a-pinacoid
- **45**. The forms that come under normal class of Hexagonal system will have six fold axis of symmetry, which will be

one horizontal axis (B)

(C) six vertical axes

six horizontal axes (D)

- 46. Two-circle goniometer is a
 - (A) Contact-goniometer
 - (B) Vertical reflecting goniometer
 - (C) Horizontal reflecting goniometer
 - Theodolite goniometer

	(C)	Traj	pezium	•.			(D)	Scale	ne triang	;le		
		•								,		
48.	How	many	fundan	ental fo	rms ar	e pres	ent in the	e norm	al class o	of the	hexagon	al division of
	the	hexago	nal syst	em?				^		•		
	(A)	6					(13)	7				
*	(C)	8	•		•	•	(D)	10			•	
			•								-	
49 .	The	plane	by which	the rev	ersed t	win cr	ystals are	e unite	d is know	n as		,
	(A)	Twi	nning pl	ane		*.	•			, .		. *
n .	(B)	Plar	ne of sym	metry	٠							•
	40	Com	position	plane							•	
	(D)	Pen	etration	plane								
•			•		-					• .	•	
50.	Mat	ch the	followin	g:		•	·. ·				,	:
	In a	crysta	l belongi	ng to the	e norm	al clas	s of tetra	gonal s	ystem.		• • •	:
	(a)	Prisn	n of 2 nd o	rder	1.	hol						
	· (b)	Pyra	mid of 1	t order	2.	hko						
	(c)	Pyra	mid of 2 ^r	^{id} order	3.	100						
	(d)	Ditet	ragonal	prism	4.	hhl						
,		(a)	(b)	(c)	(d)				•			•
	(A)	3	1	4	. 2							·
	-0	7 3	4	1	2							
,		Ū		_								•
• .	(C)	4	1	2	3							
	(D)	4	2	· 1	3					٠	٠.	· · · · · ·
GEC)UG/1	.7	÷				10					•

The shapes of the faces of the ditetragonal pyramids of the crystals belong to Tetragonal

Isosceles triangle

47.

system is

(A)

Equalateral triangle

51 .	Find -	out the						
	Ampl	nibole mineral			_			
	(A)	Augite		N	Tremolite	÷ -,	• •	
	(C)	Hypersthene		(D)	Albite			
					· · · · · · · · · · · · · · · ·			
52 .	Whic	h of the following is a	a lithium bearin	g tourm	aline?			
	(A)	Dravite		(B)	Buergerite			
	0	Elbaite		(D)	Urite			
•	-							
53.	Whic	h of the following is a	a lithium bearin	g mica?	•		,	
	(A)	Muscovite		(B)	Biolite			
	(0)	Lepidolite		(D)	Phlogopite		•	
54 .	Natu	ral hydrated silica is	called					
	(A)	Quartz		(0)	Opal	•		
	(C)	Jasper		(D)	Chalcedony	,		
	•					•		
55.	The r	efractive index of an	extra-ordinary	ray in ca	alcite is		· · · · · ·	
	(A)	1.658		(B)	1.537		. v	
	(0)	1.516		(D)	1.615			
56.	-	vice which helps bri	ng the image o	f an inte	erference fig	ure into the fo	cal plane of	the
		•			•			٠
-	(A)	Berek compensator					·	
	(B)	Filar micrometer						
·	(C)	Iris diaphragm						
		Amici Bertrand len						

						•					•	
57.	Mat	ch the	followin	g							. *	
		Colur	nn A			Column B					٠.	٠
	(a)	Dolor	nite		1.	Green color			٠,			
	(b)	Tour	maline	•	2.	Gem variety	7					
	(c)	Chlor	rite	•	3.	Double carb	onate					
	(d)	Zirco	n	-	4.	Pleochroic					•	•
		(a)	(b)	(c)	(d)				* .			
	W	3	4	1	2						ي	-
	(B)	3	1	. 4	2					•		
	(C)	3	1	2	4		÷					•
	(D)	4	1	3	2						•.	
		-	-		-							1
				•		•				•		
58.	HOI	RNBLE	NDE, is	,			-					
	I.	A sin	gle chair	silicate				÷				
	II.	A Alu	minous	amphibo	ole	•						• .
		State	ement I	and II ar	e corre	ct		•			·	•
	(B)	State	ement I	and II ar	e incor	rect						•
	(C)	State	ement I	is correc	t; II is i	ncorrect	-	•			• .	
	(D)	State	ement I	is incorr	ect; II i	s correct				٠		•
			•	•								
59 .			l access e colors :		d in th	e Petrologica	l micro	scope f	or the	detern	nination	of the
	(A)	Mica	plate			(B)	Gyps	um plat	e ·	•	•	

60. In the Petrological microscope, polarization by the Nicol prism is accomplished,

(A) by reflection

(B) by refraction

(C) by absorption

Bertrand lens

by double refraction

Quartz wedge

(C)

61.	<u> </u>	rock is characterized	by the	tvnical absense c	f felspars and dominance
	of ol	ivine and pyroxenes.	``	by prour absorbe o	i leispais and dominance
	(A)	Gabbro	(B)	Essexite	
	6	1 Dunite	(D)	Norite	
62.	The	colour index of hypermelanic rocks are			•
٠,	(A)	above 70	(B)	above 80	•
	(0)	Pabove 90	(D)	75	
			•		
63.	Bioti	te – granite exhibits –––	— tex	ture.	
	(A)	Merocrystalline		•	
	D	Holocrystalline			
	(C)	Holohyaline			
٠	(D)	Panidiomorphic			
64.		and	— are	alkali syenites.	
	(A)	Theralite and teschenite			
	0	Shonkinite and monzonite	٠.		
	(C)	Shonkinite and pulaskite			
	(D)	Theralite and canadite			
	•			4 .	
65.	The a	average silica per-centage present in ov	er sat	urated rocks	
	(A)	< 66%	0	66%	
	(C)	< 60%	(D)	48 – 65%	
3 <u>6</u> .	The v	volcanic equivalent of granodiorite is	٠ .		
	(A)	Rhyolite	(2)	Dacite	
	(C)	Trachyte	(D)	Andesite	

67.		are igneous masses	which se	al by the vents of ancient v	olcanoes
-	(A)	caldera		volcanic necks	
	(C)	volcanic plugs	(D)	cone sheets	• •
					•
68.	The	vesicles / cavities in a block lava are	·		
	(A)	smaller and regular		larger and irregular	•
	(C)	smaller and irregular	(D)	larger and regular	
	(-)				
20	mi	line and sille one			
6 9 .		dimension of sills are	·		
÷	(A)	stress			
	(2)	Inversely proportional to the visco	sity of m	agma	•
	(C)	directly proportional to the viscosi	ity of ma	gma	
	(D)	attitude of the formation		; · · · · · · · · · · · · · · · · · · ·	•
70.	The	conglomerate with more complex in	lithologi	cal composition is known as	3
	(A)	Oligomictic conglomerate			
	(B)	Basal conglomerate			
	(<u>L)</u>	Polymictic conglomerate			•
	. (D)				
	(D)	Glacial conglomerate			
71.	Onc	olites are			
	4	Calcareous accretionary bodies			
	(B)	Mechanically accreted primary st	ructures		:
	(C)	Voidal iron-oxide bodies			
	(D)	Structureless nodules			

72.		is a reddis	h , porou	s, concret	ionary ma	terial whi	ch cove	rs vast	areas	in
	tropi	cal and sub-tropical land	s			٠.				
	(A)	Regolith			•					
	(B)	Terra Rossa		•					-	
	(0)	Laterite				•				
-	(D)	Scree								
						•				
' 3.	The	sedimentary beds with ob	olique line	s of strati	fication ar	e seen in		-		•
	(A)	Cross bedding					•			
	0	Current bedding			٠.					
	(C)	Oblique bedding	•					•		
	(D)	False bedding							•	
•	-								•	
4.	The	grain size of fine sand is r	ranging fr	om					-	
	(A)	1 mm to 0.5 mm		•	•	- -				
	(B)	0.5 mm to 0.25 mm				•				
	9	0.25 mm to 0.1 mm	,				•			
	(D)	0.10 mm to 0.01 mm		•				,		
				•	•	. ·				
75 .	The	Ketazone is the high	tempera	ture of -	· ·	and	great	depth	type	of
	meta	amorphic zone.	-	•						
	(A)	less than 300° C				· .	×			
	(B)	200° – 400° C	* 🌞							
	40	1 500° − 800° C								
	(D)	300° – 500° C								
										•

76.	Meta	morphic changes take place within —		- Idiigo oi	tomporara.	10 m
	(A)	300° C – 500° C			•	•
-	(B)	250° C – 650° C				
	4	350° C – 850° C				
	(D)	Below 250° C				
				•		•
77.	Find .	out the rock which is present in ancie	nt oces	anic lithosphere	∋ .	
	_	Ophiolite	(B)	Amphibolite		
	(C)	Green schist	(D)	Blue schist		
						-
78.		facies is a type of low-grade	meta:	morphism.		
	(A)	Amphibolite	(C)	Green-schist		
	(C)	Eclogite	(D)	Granulite	•	
						• •
79.	Gran	ulose structure is due to the predomin	ance c	of ———	— minerals.	
	(A)	flak	40	1 equidimentio	nal	
	(C)	cleavable	(D)	lamellar		•
80.	In m	etamorphism, hydrostatic pressure lea	ds to	change in		
6 0.	(A)	Shape				
•	(11) -(D)	Volume			•	
	(C)	Both shape and volume				
	(D)	Size	٠			
	(2)					
81.		symbol of a given crystal form is th	e indi	ces of the face	of that form	which has the
	simp	lest relations to the				
:		Crystallographic axes		•		
	(B)	Crystallographic planes				• .
. '	(C)	Centre of symmetry				
	(D)	Diagonal axes of symmetry	•			
						•

(A)	light grey	•	(1)	white	
(C)	medium grey		(D)	dark grey	
٠.,	•	:			
A we	ell that is far from know	n oil or gas pro	duction	n in order to secure a complete reco	rd
	ation is				
(A)	dry well		(B)	shaft	
(0)	wildcat well		(D)	core well	
_					
Dam	ns aligned along axial reg	gions of the fo	lds wou	ld be resting on most	
	erms of strength.	<u></u>			
U	unsound		(B)	sound	٠.
(C)	most sound	•	(D)	moderate sound	
					•
The	Salal Dam in Jammu is	the best exam	ple for		
المرزد	microjoints		(B)	parallel bedding	
(C)	down stream dipping	•	(D)	folded formation	
(U) .	down buroum aippaing		(-)	·	
_		·		-fluing-talleline called	
		res removing a	•	of horizontal slices called	
(A)	Flipped over		(B)	Berms	
(C)	Batters			Flitches	
•					
	· ·			mages that are caused by linear al	igi
	atures such as streams,	mountains, ta	uits.	1	
(A)	Linears			Lineaments	
(C)	Lineation		(D)	Contact line	
Dole	erite and Pyroxenite ro	cks can be re	cognise	d in the aerial photos by means	of
·	tone.				
(A)	Light grey	·.	(B)	White	
(C)	Medium grey		(T)	■ Dark grey	•

	(A)	Magmatic deposi	ts	· 4	T)	Metasomatic	c deposits		
	(C)	Pegmatite deposi	its	((D)	Sedimentary	deposits		
90.	Find	out the stratified o	leposit typ	e	٠				
		Saddle reefs	F • J F		(B)	Veins	<i>*</i>		
	(C)	Shear-zone depos	sits		(D)	Stock works			
	, ,	· ·	,						•
91.	. Find	out the non-placer	mineral fr	om the follo	win	σs			÷
· ·	(A)	Platinum	minoral ii		B)	Garnet		•	
	CO	Bauxite			D)	Tungsten			
							•		
92.	Mate	ch the following :							
, <u>.</u> .	` .	Group		Mineral					
	(a)	Mineral fuels	1.	Corundun	1				
•	(b)	Metallic minerals	2.	Uranite			•		
	(c)	Non-metallic mine	erals 3.	Chromite		:			
	(d)	Nuclear minerals	4.	Coal				. •	
		(a) (b) (c	(d)	•					
	4	4 3 1	2						
	(B)	4 3 2	2 1						
	(C)	3 4 1	. 2				·		
				Ĺ					ان
	(D)	3 4 2	2 1					•	
93.	_	ck or material wh	ich can be	profitably	min	ed for the pu	rpose of mo	etal extra	action is
	(A)	Mineral		. 🗳		Ore			
	(C)	Gangue		(D)	Metal			

18

Simultaneous solution of pre-existing components from a rock and replacement of the same

by new minerals. In which type of mineral deposit the above said process may occur?

89.

GEOUG/17

		·	and the second s
94.	Important mineral	leposit in the Shevaro	y hills in Tamilnadu is

- (A) Iron ore
- (B) Magnesite
- (C) Limestone
- Bauxite

95. Match the following:

Diagnostic colour Mineral or Metal Black 1. (a) Copper Green and Blue 2. (b) Nickel Green Molybdenum 3. (c) **Bright Yellow** (d) Manganese 4. (b) (c) (d) (a) 2 3 (A) 2 4 3 **(B)** 2 3 1

2

1

96. _____ are those whose existence is considered probable after a certain amount of prospecting work and geological observations.

(D)

Probables reserves

- (B) Possible reserves
- (C) Assured reserves
- (D) Inferred reserves

97.	A st	rato-volcano exhibits rough strati	fication pro	duced by		
	(A)	Pyroclastic material				
	(B)	Alternate sheets of lava			•	
	(C)	Dykes			·	
	9	Alternate sheet of lava and pyr	oclastic ma	terial		
				•		-
98.	In th	ne deltaic feature, the fore-set bed	s have —	- inclination.		
٠.	(A)	horizontal				
	(B)	gentle slope				
	6	steep inclination				
	(D)	gentle inclination toward seawa	ard			
•						
99.	A ve	ery deep valley, developed in I	imestone	rocks formed by th	e solution	,
		nown as	amestone	rocks, formed by th	e solution	processes,
	(A)	Blind valley		Karst valley		
	(C)	Swallow holes	(D)	Polje		
		•				
100.	The	channels of many meandering str	eams are bo	ordered by		
•	(A)	Flood plains	(B)	Braided streams		
	V	Natural levees	(D)	Point bars	•	
	*		•			
101.	The	volcanoes that are built up from a	alternate la	vers of lava and ash	but besides	the main
(4)		er, it has many craters on the slop				, , , , , , , , , , , , , , , , , , , ,
	(A)	Ash-cinder volcano	T)	Strato-volcano		
	(C)	Fissure-volcano	(D)	Caldera-volcano	•	
		•				•
l02.		complex of geomorphic processes		s which operate und	er a particı	ılar set of
	(A)	Landforms	(B)	Simple landssense		-
	(C)	Morphogenetic system	. ,	Simple landscapes		•
		morphogenesic system	(D)	Compound landscap	es	

103.	_	g scoop-shaped hollows of sand with e gentler than leeward are known as	_	apering to windward and with a windwa	iro
	(A)	Transverse	(D)	Parabolic dunes	
	(C)	Longitudinal dune	(D)	Sand levees	
		•			
104.		frost-shivered fragments fall to low is are called	er levels	s of mountains and accumulate as angu	laı
	(A)	Talus	D	Screes	
	(C)	Humus	(D)	Hard-pan	
105.	Evid	ence from the salinity of the oceans: 1500 my		that the age of the oceans must be atleas	t
	(C)		(B)	1600 my	
	(C)	1700 my	(D)	1800 my	
106.	Wha	t is the primary effect of attrition by	wind?		
	(A)	change in shape	W)	reduction in size	
	(C)	reduction of wind velocity	(D)	reduction of distance of transport	
=					
107.		rtain constant fraction of any sampl '. This law of radioactive disintegrat		oactive element undergoes change in a u framed by	nit
	(A)	Laplace	(B)	Q.J. Schmidt	
	(C)	Marie curie	· · · ·	Rutherford	
	·				
108.		n two Lithospheric plates are movir wsurfaces, this margin of the plate i		from each other, inducing the development ied as,	nt
	(A)	Destructive margin	(B)	Conservative margin	
	0	Constructive margin	(D)	Neutral margin	
	. •				
109.	The	sulphorous gases that escape from t	ne fumer	oles are called as,	
	(A)	Saffoni	(B)	Mofettes	v
	(C)	Travertine		Salfataras	

110.	Ptilo	phyllum is an index fossils of						
	(A)	Jurassic	(B)	Triassic				
	C	UP. Gondwana	(D)	L. Gondwana				
			•					
111.	TInne	er Gondwana beds of Trichirapalli co	ntains					
. 111.	Oppe	Micaceous shale and clay	(B)	Fossiferous limesto	ne			
	((1)	Conglomerate	(D)	Dolomite				
	(C)	Conglomerate	(D)	Dolomic				
112.	Find	out the correct stratigraphic sequence			•			
	(A)	Patcham series, Umia series, Katro		•	v			
	(B)	(B) Umia series, Katrol series, Chari series, Patcham series						
	YOU	Patcham series, Chari series, Katr	ol series,	Umia series	*			
	(D)	Katrol series, Patcham series, Cha	ri serìes,	, Umia series				
	· .							
113.	Find	out the youngest stage of cretaceous	success	ion in Trichirapalli				
110.	(A)	Uttatur	(B)	Trichirapalli				
	(21) -(21)	Niniyur	(D)	Ariyalur				
		Tviniy di	(-)					
				· · ·				
114.	Age	of Satyavedu conglomerate is						
	(A)	Cretaceous	(B)	Jurassic				
	101	Upper Gondwana	(D)	Lower Gondwana				
				•	•			
115.	The	famous kolar gold mines of India are	located	which one rocks?				
	(A)	Cuddapah	TO !	Archean				
	(C)	Vindhyan	(D)	Gondwana				
	(0)	, , , , , , , , , , , , , , , , , , ,						
-				1	ed adopted in historics			
116.		efinite system of time-units and rock- ogy. To find out which one is correct	units na	s been established at	iu auapteu iii instorica			
٠	- Scor	Epoch-Series	(B)	Era-System				
	400	Epoch-Series	(D)	Period-Stage				

117.	The r	ratio between the density of a mineral to that of water at 4° Celsius is known as
	(A)	Hardness
	D)	Specific gravity
	(C)	Tenacity
	(D)	Surface tension
·.		
118.	The a	angle of inclination of the fold axis from the horizontal is called as
	(A)	Interfacial angle Plunge
	(C)	Monocline fold (D) Over fold
119.	Tho 1	hanging wall in a vertical section at right angles to the strike of the fault, appears to
113.		gone down relative to the foot wall, then the fault is
	(A)	Apparent overthrust fault
	(B)	Apparent reverse fault
	(C)	Apparent thrust fault
	0	Apparent normal fault
120.	The	Chamundi granite is the best example for
		Sheet joints (B) Mural joints
	(C)	Master joints (D) Shear joints
101	//VIL _	anticlines become charmer with donth but broader and more open unward. Conversely
121.		anticlines become sharper with depth, but broader and more open upward. Conversely, synclines becomes broader with depth, but sharper upward, then the fold is called
	(A)	Similar Concentric
٠.	(C)	Piercing (D) Plunging
122.	With	in the elastic limit, what is the relation of stress and strain?
124.	VV 101	Strain is proportional to stress
	(B)	Stress is inversely proportional to strain
	(D) (C)	Stress is less than strain
	(D)	Stress is greater than strain
	$\langle D \rangle$	Parodo in Brogger arrain

123.		ock with upper triassic fossils is direct though the strata may appear to be co		rlain by rocks with lower cretaceous fossils, able, then it is
	(A) [.]	Fold	(B)	Fault
	0	Unconformity	(D)	Joint
124.	A for		expos	ed in artificial openings such as quarries is
	(A)	Exfoliation	D	Sheeting
	(C)	Tension joints	(D)	Release joints
		•		
125.	The a	angle between the fault plane and a ve	rtical p	plane that strikes parallel to the fault is the
	(A)	Dip	(B)	Strike
	(C)	Slip	D	Hade
	` '			
126.	A loc	al unconformity is similar to a		
120.	(A)	Angular unconformity	O	Disconformity
	(C)	Non-conformity	(D)	Angular non-conformity
	(0)	11011 001122111105	(-)	
127.	The	apparent dip value will be always ——		to the true dip.
121.	(A)	equal	· •	less
	(C)	greater	(D)	vertical
	(0)	ground.	(2)	
100	mh .	surface indicating a hiatus in a norma	l ondon	of acquence then it is called as
128.	(A)	Conformable series	Order	Unconformity
	,(八) (C)	Horst	(D)	Over thrust
	(0)	110150	(D)	Over unitast
129.		mplete skeleton of single theca of a	a solit	ary coral or united thecae of a colony is
	4	Corallum	(B)	Septa
	(C)	Scelerosepta	(D)	Basal Plate

130.	Fora	miniferal tests range in size			
	(A)	From 0.1 to 1.0 mm	T)	From 0.01 to 19.0 mm	
	(C)	From 1.0 to 10.0 mm	(D)	From 1.0 to 10.0 cm	
	•				
131.	Mega	alospheric tests consists			
,	(A)	Smaller shell and large proloculus			
	(B)	Large shell and large proloculus			
	(C)	Large shell and small proloculus			
	(D)	Small shell and small proloculus			
132.	Age	of Terebratulina is			
	4	Jurassic to present day	(B)	Carboniferous to present	٠
	(C)	Cambrian-recent	(D)	Triassic-present	
133.	Whic	ch one is megascopic foraminifera fossi	1?		
	44	Nummulite	(B)	Globigerina	
	(C)	Orbulina	(D)	Rotalia	
134.	The	oculogenetal system of Echinoid cons	ists of	number of ocular plate and	d
٠,		number of genetal plate.	•		
	(11)	5 and 5	(B)	3 and 4	
	(C)	3 and 3	(D)	4 and 3	
•					
135.	Hear	rt shaped echinoid is	٠		
	(A)	Holectypus	(B)	Conulus	
	(C)	Pygaster	0)	Micraster	
	•		•		
136.	Node	o saria is a			
100.	(A)	Ostracoda	(B)	Mollusca	
	(C)	Trilobita	T.	Foramini fera	
•			•		

137.	For t	the forms that come under no	rmal class	of He	exagonal syste	m will hav	е	
	(A)	6 Horizontal planes						
	B	6 Vertical planes						
	(C)	4 Inclined planes						•
	(D)	4 Vertical planes					Ž.	
				• .				
138.	In m	nonoclinic system, the acute	angle bety	veen t	the axes "a" a	nd "c" is a	represented	l by the
	(A)	α		0	β			
	(C)	γ	•	(D)	heta			
	•						•	٠
139.	The	contact-goniometer consists o	of a card o	n whic	ch is printed a	semi-circ	ular are gr	aduated
	to				; ¯			
	(2.1)	$\frac{1}{2}$ degrees		(B)	$\frac{1}{4}$ degrees			
	(C)	$\frac{1}{2}$ degrees $\frac{3}{4}$ degrees		(D)	One degrees	•	÷	
								*
140.		ineral showing no external fored as,	orm, but h	naving	a definite in	ternal mol	ecular stru	icture is
	(A)	Massine		(0)	Crystalline		·	
	(C)	Amorphous		(D)	Isomorphous	3	-	
٠.								
141.	This	mineral is having two sets of	f polysynth	netic t	winning	-		
	(A)	Albite		(B)	Pericline			
	10	Microcline		(D)	Sphalerite		•	
		•			•			
142.	Nam	e the crystallographic system	a where a	$\neq b \neq c$	and $\alpha = \beta = \gamma$	⁄ ≡ 90°		
	(A)	Tetragonal		(B)	Rhombohedr	al		
	(0)	Orthorhombic		(D)	Triclinic			
	•		÷					

	٠						•
143.	With	few exceptions, the t	wins of t	he normal clas	s of isometric sy	stem will b	e of
	(1)	Contact twins				•	
	(B)	Penetration twins					
•	(C)	Repeated twins					· ·
	(D)	Polysynthetic twins	3	•			
144.	The t	type mineral of the no	ormal cla	ss of the hexag	onal system is		•
,	(A)	Calcite		(B)	Tourmalines		•
	(C)	Corundum			Beryl	- -	
<u>-</u>		Corumani			200,0		
145.	Mata	ch the following :					
140.	Man	System		Axial Ratio	•		
		•					
. •	(a)	Isometric	1.	$a_1 = a_2 \neq c$			
	(b)	Tetragonal	2.	$a_1=a_2=a_3$	• • • · · · · · · · · · · · · · · · · ·	٠	
	(c)	Orthorhombic	3.	$a_1 = a_2 = a_3 \neq$	c		
			•			•	
-	(d)	Hexagonal	4.	$a \neq b \neq c$	•		
-		(a) (b) (c)	(d)				
•	U	2 1 4	3	•	•	*	
-	(T)						•
	(B)		3	•			
	(C)	2 1 3	4				-
	(D)	0 2 1	4				

(A) Albite

(B) Axinite

Orthoclase

(D) Rhodonite

147.	When light passes from one medium to another medium, there is a generally a decrease (or increase in velocity, which is known as								
	(4)	Refraction	(B)	Reflection	•				
	(C)	Double refraction	(D)	Isotropism					
148.		lored mineral, which shows a change i rised light, is referred as,	in the	intensity of color, du	ring rotation in plane				
	(A)	Isotropic	(B)	Anisotropic					
	(C)	Mono chromatic	•	Pleochroic					
149.	I	As the objective lens is raised the refractive index.	Becke	line moves into the	e substance of highe				
	II.	As the microscope stage is raised th refractive index	e Becl	ce line moves into th	e substance of highe				
	(A)	Statement I and II are correct							
	(B)	Statement I and II are incorrect	-						
	(C)	Statement I is correct and II is incor	rect						
	(D)	Statement I is incorrect and II is corr	rect						
150.	Dolo	omite crystallizes under							
	(A)	Monoclinic system	(B)	Triclinic system					
	(C)	Cubic system	D	Hexagonal system					
151 .	Garr	net minerals crystallize under							
	(A)	Monoclinic system	(B)	Triclinic system					
	40	Cubic system	(D)	Orthorhombic syste	m				
152.	Perc	ussion figure is produced in the minera	ıl						
	(A)	Amphibole	40)	Mica					
	(C)	Pyroxene	(D)	Quartz					

- A process of emission of light at the same time as the irradiation is called 153. Phosphorescence (A) Fluorescence Incandescence (C) (D) Luminescence The following mineral is having adamantine luster. **154**. Cassiterite **(B)** Stilbite Albite (C) Heulandite (D) 'Pyro electric' minerals develop an electric charge when subjected to a change in stress. 155. I. II. 'Piezo electric' minerals develop an electric charge when subjected to a change in temperature Statement I and II are correct (A) Statement I is correct and II is incorrect **(B)** Statement I and II are incorrect Statement I is incorrect and II is correct (D) The property of a mineral, to display play of color due to the interference of rays of light either by minute globules of water trapped in the crystal lattice (or) by distortion in the atomic lattice, is known as, Pleochroism (A)
 - (D) Opalescence

Schiller

Iridescence

(B)

157.	When	n Nepheline replaces the feldspar in q	uartz g	abbro, the rock	approaches to
	(A)	Norite	T	Essexite	
	(C)	Pyroxenite	(D)	Monzonite	
158.	The 1	ratio of FeO to Fe ₂ O ₃ is ———————————————————————————————————	i	n the ropy lava.	•
	NA	greater	(B)	smaller	,
	(C)	equal	(D)	constant	
			•		
159.	The	mineralogical composition of norite is			
	(A)	Anorthite and Clinopyroxene	,		
	(B)	Anorthite and Orthopyroxene			
	(0)	1 Labrodorite and Orthopyroxene			
	(D)	Labrodorite and Clinopyroxene			
160.		<u> </u>	and —	· .	— are mafic minerals.
•	(A)	Biotite, Hypersthene, Leucite			
	0	Biotite, Hypersthene, olivine			
	(C)	Biotite, Hornblende, Orthoclase			
	(D)	Biotite, Hornblende, Analcite			
161.			- and –	·	— are salic minerals
	(A)	Quartz, Albite, Apatite		· ·	•
	(B)	Quartz, Albite, Hypersthene			
	40	Quartz, Albite, Zircon			
	(D)	Quartz, Albite, Acmite			

102.		orthoclase	or the composit	non of andesite, quartz, no	rnbiende, blouw
	.43	Tonalitis	(B)	Gabbros	
	(Č)	Granodiorite	(D)	Granite	•
163.	The	volcanic rock which is the eq	uivalent of mo	nzonite , carrying alkali-fel	ldspar and soda
	lime	feldspar in approximately eq	ual amounts is	called	
	(A)	Trachyte		Trachyandesite	
	(C)	Andesite	(D)	Dacite	
164.	Fast	cooling and high viscosity fav	our the format	ion of	
	(A)	bigger crystals	(B)	smaller crystals	
	40	glass	(D)	both (A) and (B)	•
`		·			
165.	The t	transformation of glass to cry	stalline matter	is called	
. ,	(A)	crystallisation			
	0	devitrification			
	(C)	recrystallisation			
	(D)	felsitisation			
166.	The 1	rock which more often forms	glassy form is		
	(A)	Andesite		Rhyolite	
	(C)	Basalt	(D)	Trachyte	,
167.	Text	ures in igneous rock is define	d ac		
101.	(A)	size and shape of the grains	•		•
	(21)	mutual relation of mineral	•	ter	
	(C)	ratio between exectallized			ų.

the fabric

(D)

100.	rma	out the incorrect carbonate rock			-	
	(A)	limestone	(B)	dolomite		
	4	marl	(D)	magnesite		•
					-	
169.	Chal	k is a type of		•	•	
	(A)	mud stone	(B)	dolomite		
-	(C)	gypsum	(3)	lime stone		
				•		
170.	In aq	queous ripple marks, the finer grains a	are fou	nd on the		
	M	crests				
	(B)	troughs				
	(C)	short slopes of the ripple				·
	(D)	long slopes of the ripple				
	. *					
171.	· A sar	nd stone with abundant feldspar deriv	ed from	n the disintegra	ation of gra	anite is called
•	(A)	Grit	(m)	Arkose		
	(C)	Graywacke	(D)	Ganister		
	٠.					
172.	Very	plastic, highly aluminous and iron fr	ee clay	is called	1	•
	(A)	fire clay	(B)	chira clay		
	(C)	brick clay	(D)	pottery clay	e e e e e e e e e e e e e e e e e e e	
173.	Gray	wacke is chiefly composed of				
	(A)	Quartz and orthoclase				•
-4		Quartz and plagioclase				
	(C)	Quartz and muscovite			. •.	
	(D)	Quartz and biotite				
	(—)	· · · · · · · · · · · · · · · ·				•

174. Match the followings:

- (a) Cataclastic structure
- 1. Lense like appearance
- (b) Schistose structure
- 2. Spotted appearance
- (c) Maculose structure
- 3. Parallel bands of platy minerals
- (d) Augen structure
- 4. Extremely fine rock mass

- (a)
- (b)
- (c)
- (d)

- (A)
- 2
- 3

2

4

1

2

- *I*D 4
- 3

- (C) 4
- 3
- 1
 - .

- (D) 1
- 2
- 3

175. Find out the non-foliated rock

- (B) Slate
- (C) Schist
- (D) Gneiss

176. Find out the correct sequence:

- 1. Slate \rightarrow Phyllite \rightarrow Schists \rightarrow Shale
- 2. Shale \rightarrow Phyllite \rightarrow Schists \rightarrow Slate
- 3. Shale \rightarrow Slate \rightarrow Phyllite \rightarrow Schists
- 4. Phyllite \rightarrow Schist \rightarrow Shale \rightarrow Slate
- (A) 1

(B) 2

(C) 3

(D) 4

177.	The r	otary drilling used in which formation:		; *		
	(A) .	Formation change from soft to hard				
	(B)	Soft formation		· .		
	4	Hard formation				
	(D)	Formation change from hard to soft	•			
178.	[Ankl	ri Dam is a type of	. *		•	
170.			(D)	. D. 445 D		
-	· (A)	Gravity Dam	(B)	Buttress Dam		-
		Arch Dam	(D)	Earth-rock fill Dam		
						•
179.		employed in the exploitation of placers			epths, suc	h as buried
		placers and ancient river channels, th	e min	ling method is		•
	(A)	Long tom			•	
	(B)	Dredging				
		Drift mining			•	•
	(D)	Ground sluicing				
					-	
180.		l sized, irregular and unsystematic und ngs, which follow the ore shoot or vein			nprise dri	fts or other
	(A)	Breast stoping	io cai	ica		
	(11)	Gophering				
	(C)	Open underhand stoping				
						•
•	(D)	Open overhand stoping				
				•		
181.	Joints	s that dip from 0° to 20° irrespective of	strik	e to the tunnel axis is		· .
•	(A)	Favourable	D	Unfavourable		
	(C)	Fair	(D)	Very favourable		
•			٠	•	·	
182.	The w	vavelength of microwave region of EMR	l is			
•	(A)	0.4 to 0.7 micrometers.				-
	(B)	1.0 to 1.4 micrometers				
	(C)	0.1 mm to 0.5 mm				
		1 mm to 1 m				

183.	The c	critical angle of slope varies from -	<u>.</u>	·	for perfectly	crystalline	unjointed
	rocks	, as for as landslides are concerned.	-		. •		
	(A)	45°	(B)	60°			· · · · · · · · · · · · · · · · · · ·
*:	(C)	75°	D	90°			•
						•	
184.		is one of the longest ma	sonry-ea	arth dan	ns of the worl	d as in 200	3. ·
	(A)	Krishnaraja Sagar					·
	T)	Nagarjuna Sagar					
	(C)	Bhakra Dam					
	(D)	Hirakud Dam					•
185.		n the layers of weak plastic charact deposits, there is a possibility of	er such	as those	of peat and	shale are o	verlain by
	(A)	Slump	0	Subsid	ence	<i>*</i>	
-	(C)	Rock fall	(D)	Rock s	lides		
				·		·	
186.	What	is the length of the Hirakud Dam?		•			
	(A)	5400 m	(B)	5800 n	1 ,		
	(C)	4800 m	(D)	4400 n	1		
						•	
187.	The g	reatest number of large dams are in		•			
	(A)	Madhya Pradesh	(3)	Mahar	ashtra		
	(C)	Gujarat	(D)	Karna	taka		
	•						
188.	The l	ongest dam, the Hirakud dam built	across —		river		
•	(A)	Ganges	(B)	Godav	ari		`.
	4	Mahanadi	(D)	Krishn	ıa	•	

189.	Porp	hyritic copper deposit is a	•	
	(A)	Vesicular filling deposit		
	(B)	Breccia filling deposit		•
•	. 4	Replacement deposit		
	(D)	Ladder vein deposit		*
190.	Whi	ch of the following is 'not' a process of n	ninera	l formation?
•	(A)	Sublimation	(B)	Sedimentation
	4	Erosion	(D)	Evaporation
191.	Alab	aster is a softer and lighter variety of		•
	(A)	Calcium sulphate	T	Gypsum
	(C)	Borax	(D)	Celestite
÷				
192.	The	chief boron minerál formed by evaporat	ion of	playas is
		Colemanite	(B)	Mirabilite
	(C)	Argendite	(D)	Travertine
19 3.	The l	Hutti gold deposit occurs as		
	<u>(</u> A)	Ladder vein	T	Saddle reef
	(C)	Pitches and Flat	(D)	Breccia filling deposit
**	•			
194.	Copp	er sulphides minerals are formed by	,	•
	(A)	Evaporation		
	P	Sedimentation		
	(C)	Magmatic concentration	•	· .
	(D)	Mechanical concentration		

IJU.	THE U	emperature of formation of hypometic	iai act	Josita are perween — — — deg	v
	(A)	50 and 200	(B)	200 and 300	
	9	300 and 500	(D)	500 and 800	
	•				
196.	The n	nineral Bronzite Crystallizes in ———		– system.	
	(A)	Rhombohedral	(B)	Triclinic	**
	(C)	Hexagonal	101	Orthorhombic	
197.	The c	omposition of chalcopyrite mineral is			
		$CuFeS_2$	(B)	Cu₂S	
	(C)	FeS_2	(D)	FeSO ₄	
	•		-		,
198.	The b	igh temperature hydrothermal deposi	t ie ca	llad as	
190.			16 18 Ca	neu as	
	(A)	Epithermal deposit			
	(B)	Mesothermal deposit	•		
	C	Hypothermal deposit			
	(D)	Epi-Mesothermal deposit			
			•		
199.	Tertia	ary coal field is found in	*		
	(A)	Andhra Pradesh			
	(B)	Bihar	•		
•	(C)	Maharashtra			
	D)	Jammu and Kashmir			
200.	Thie	copper ore is common in oxidation zon	e		
2 00.		, 	~	Cuprite	
	(A)	Bornite			
	(C)	Chalcopyrite	(D)	Covelite	
		•			

