

Time: 3 hours

Full Marks: 300

The figures in the right-hand margin indicate marks.

Candidates should attempt Q. No. 1 from Section – A and Q. No. 5 from Section – B which are compulsory and three of the remaining questions, selecting at least one from each Section.

## Section - A

1. Attempt any five of the following sub-parts:

 $12 \times 5 = 60$ 

(a) Show that Poisson distribution can be obtained as an approximation to Binomial distribution.

(b) If 
$$p(x) = \begin{cases} \frac{x}{15}, & x = 1, 2, 3, 4, 5 \\ 0 & \text{elsewhere} \end{cases}$$
  
find (i)  $P(X = 1 \text{ or } X = 2)$ 

(ii) 
$$P\left(\frac{1}{2} < X < \frac{5}{2} | X > 1\right)$$

Sketch the distribution function F(x).

(c) Given the joint pdf of (X, Y)

$$f(x, y) = \begin{cases} 8xy & 0 < x < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Obtain E(X), E(Y) and Cor (X, Y).

- (d) Derive the characteristic function of the standard normal distribution.
- (e) In a simple linear regression model  $y = \beta_0 + \beta_1 x + \epsilon$ , obtain the least squares estimation of  $\beta_0$  and  $\beta_1$ . Stating the assumptions, derive the procedure to test for the significance of  $\beta_1$ .
- (f) Define Hotelling's T<sup>2</sup>-Statistic and Mahalanobis D<sup>2</sup>-statistics. State the relationship between them. Mention any two applications of T<sup>2</sup>-statistic.
- 2. (a) A bag contains 6 red, 5 white and 4 black balls. If two balls are drawn at random, find the probability that:
  - (i) None of them is red
  - (ii) One is white and one is black

- (b) If X and Y are independent rvs show that:
  - (i) E(cX + dY) = cE(X) + dE(Y), c,  $d \in R$ .
  - (ii)  $V(aX-bY) = a^2v(X) + b^2v(Y), a, b \in R.$
- (c) Derive the moment generating function of a binomial distribution B(n, p). Hence, derive its mean and variance.
- 3. (a) The joint pdf f(x, y) is given by f(x, y) = x² + xy/3, 0 < x < 1, 0 < y < 2, find the marginal density function of X and Y, conditional density function of X given Y = y, E (X | y) and V(X | y).</p>
  - (b) If X<sub>n</sub> → P X and g is a continuous function in red line R, then show that g(X<sub>n</sub>) → P → g(X).
    - (c) Let  $\{X_n\}$  be a sequence of independent rvs with  $P(X_n = n^{\lambda}) = P(X_n = -n^{\lambda}) = \frac{1}{2}$ . Examine for what values of  $\lambda$ :
      - (i) The central limit theorem holds
      - (ii) WLLN holds

 $20 \times 3 = 60$ 

DA - 5/5

(3)

(Tum over)

- 4. (a) State the multiple linear regression model with the assumptions. Explain a procedure to estimate the parameters of the model. Define the coefficient of determination R<sup>2</sup> for this model.
  - (b) Given the simple correlations among the three variables  $r_{12} = 0.77$ ,  $r_{13} = 0.72$  and  $r_{23} = 0.52$ , find the partial correlation coefficient  $r_{12.3}$  and the multiple correlation coefficient  $R_{1.23}$ .
  - (c) Derive the Bayesian Classification rule to classify an observation into one of the two multivariate normal population with equal covariance matrices.
    20×3 = 60

## Section - B

- 5. Answer any three of the following:
  - (a) (i) State Neyman Factorisation Theorem.

    Obtain the sufficient statistics for the parameters of the following distributions:

 $P(\lambda)$ , and  $N(\mu, \sigma^2)$ 

- (ii) Based on a random sample of size n from  $f(x, \theta) = \theta e^{-\theta x}$ , x > 0, derive the UMVUEs of  $\frac{1}{\theta}$  and  $\frac{1}{\theta^2}$ . 10+10=20
- (b) (i) Define monotone likelihood ratio property. Examine whether the following family possess this property:

$$N(\mu_0, \sigma^2), \sigma^2 > 0$$

(ii) Explain Wald's SPRT and describe the test proceduce for binomial proportion.

$$8+12 = 20$$

- (c) (i) Explain a procedure for the sample size determination, for estimating the population mean under SRSWR.
  - (ii) Discuss the selection procedure for drawing a sample of n units from N units under PPSWR. 10+10 = 20
- (d) (i) Explain fixed effects, random effects and mixed effects models with examples.
  - (ii) Explain the three basic principles and their importance in the design of experiments.8+12 = 20

DA - 5/5

(Turn over)

- (a) Define complete statistics and show that ΣX<sub>i</sub>
  is a complete statistics for the Poisson family
  of distributions.
  - (b) State Cramer-Rao inequality. Obtain the Cramer-Rao lower bound for the variance of an unbiased estimator of μ based on a sample of size n from N(μ, 1).
  - (c) Define a most powerful (MP) test. Construct an MP test of H<sub>0</sub>: θ = 1 against H<sub>1</sub>: θ = 2 based on a sample of size n from N(θ, 1).
  - (d) State Basu's Theorem on ancillary statistics.
    Show that Y<sub>n</sub> and Y<sub>1</sub> are independent rvs, based on a random sample of size n from V(0, θ), where Y<sub>r</sub> is the r<sup>th</sup> order statistics.
  - (e) Explain the method of scoring for computing maximum likelihood estimators. 12×5 = 60
- (a) State a Latin Square Design (LSD) with the assumptions. Describe the analysis of this model to test the significance of the relevant hypothesis.

- (b) Describe the following non-parametric tests: 12
  - (i) Kolmogorov-Smirnov Test (One sample)
  - (ii) Mann-Whitney U test
- (c) Let  $X \sim N|\mu$ ,  $\sigma^2$ ). Construct the likelihood ratio test to test  $H_0: \mu = \mu_0$  against  $H_1: \mu \neq \mu_0$ , when  $\sigma^2$  is unknown.
- (d) Distinguish between complete confounding and partial confounding in factorial experiment. Illustrate the layout of these designs in a 2<sup>3</sup> factorial experiment.
- (e) (i) Explain Warner's randomised response technique.
  - (ii) Define Horvitz-Thompson estimator of the population total Y and derive its variance.4+8 = 12
- 8. (a) Explain the role of auxiliary variables in ratio and regression methods of estimation. Show that regression estimator is more efficient than ratio estimator for estimating the population mean.
  - (b) (i) Distinguish between stratified sampling, cluster sampling and two-stage sampling.

- (ii) In a cluster sampling with equal cluster size, suggest an unbiased estimator for the population mean and derive variance of the estimator.
   6+6 = 12
- (c) Explain the missing plot technique in design of experiment. Obtain an estimator for a single missing observation in a RBD and derive its variance.
- (d) What are factorial experiments? Mention the advantages. State the orthogonal contrasts for the main effects and the interaction effects in a 3<sup>2</sup> factorial experiment. Set up the ANOVA table for testing the relevant hypothesis.
- (e) (i) Define BIBD and give a layout of this design. Show that BIBD is a connected design.
  - (ii) Define split plot experiment with whole plot treatments and split plot treatments within a whole plot, with r being number of replications. Outline the analysis of this design.