

Time: 3 hours

Full Marks: 200

The figures in the right-hand margin indicate marks.

Candidates should attempt Q. No. 1 from Section – A and Q. No. 5 from Section – B which are compulsory and any **three** of the remaining questions, selecting at least **one** from each Section.

SECTION - A

Answer any two of the following questions :

 $20 \times 2 = 40$

(a) Label the following compounds as aromatic,
HÖH non-aromatic or anti-aromatic with
justification:

LB - 10/11

(Turn over)

- (b) Which one in each of the following pairs is more stable and why?
 - (i) F₃CC(OH)Me and MeC(OH)Me
 - (ii) PhCH = $CH\dot{C}H_2$ and $MeCH = CH\dot{C}H_2$
 - (iii) F₃C⁺ and H₃C⁺
 - (iv) Me₃C⁺ and Ph₃C⁺
 - (v) Cyclohexyl anion and Phenyl anion

- of (c) Give reasonable explanations to the following observations:
 - (i) 2,6-dideuteriobromobenzene reacts with NaNH₂ more slowly than bromobenzene.
- (ii) O-deuteriofluorobenzene exchanges its

 'D' for H rapidly with KNH₂ in liquid
 ammonia, but forms aniline more slowly.
 - (iii) Benzyne generated by thermal decomposition of the diazonium carboxylate salt, $O = \dot{N}_2 C_6 H_4 CO_2^-$, dimerizes.
 - (iv) Me—ipr, on treatment with mixed acid, a product of molecular formula, C₈H₈N₂O₅ is formed.
- (v) The reaction of ethyl vinyl ether with dilute aqueous acid takes place at 10³ times faster rate than that of the reaction of diethylether with the same acid.

- 2. (a) State the product(s) and give the mechanisms including stereochemical features of the following reactions:
- (i) trans-2-butene with aqueous alkaline
 KMnO₄.
- whole from containing catalytic amount of OsO_4 .
- (iii) (z)-2-pentene with perbenzoic acid in chloroform solvent.
 - (b) Carry out the following conversions: 15
 - (i) Toluene → 1, 7-dimethylnaphthalene

- (iii) Phthalic acid → 9-methylanthracene
- (c) Outline Bardhan-Sengupta synthesis of phenanthrene.

LB - 10/11

(4)

Contd.

(d) How would you establish that the following reaction follows E2 but not E1cB mechanism?

$$PhCH_2CH_2Br \xrightarrow{OEt} PhCH = CH_2$$

(a) Predict the products of the following reactions with Plausible mechanism: 25

(i)
$$H_2O_2$$
 / aq. NaOH

(iv)
$$Et_2NH \xrightarrow{HCHO/HCO_2H} \Delta$$

(v)
$$H_2SO_4$$
 $H_2O/MeOH$

(b) Carry out the following transformations: 15

(i)
$$O \longrightarrow O \longrightarrow Br$$

$$Br$$

$$Br$$

$$Br$$

- 4. (a) Which of the following pairs of reactions will occur faster and why?
 - (i) Oxidation of trans- and cis-4-t-butylcyclohexanol by chromic acid.
 - (ii) Base catalysed elimination of trans- and cis-4-t-butylcyclohexyl bromide.
 - (b) Explain the following:

15

 Stability of the two conformations of methylcyclohexane and their comparison.

LB - 10/11

(7)

(Turn over)

- (c) Give one example of each of the following and also their mechanisms:
 - (i) Wagner-Meerwein rearrangement
 - (ii) Skraup synthesis
 - (iii) Reformatsky reaction

SECTION - B

- 5. Answer any two of the following questions:
 - (a) Define number average and weight average molecular weight of a polymer. How the molecular weight of a polymer can be determined by using light scattering method?

LB - 10/11

(8)

Contd.

eve (b) (i) Write down the structures of pyrimidine
15	and purine bases present in nucleic acid
ad of	elucation for the state (ii) 10
pure tional	(ii) What is the 'linking number' for a super- cooled circular DNA? Define B-DNA, A-DNA and Z-DNA.
d (c) 10 ae	(i) Define Primary, Secondary, Tertiary and Quaternary structures of a polypeptide molecule.
ni naq Isnoits bnad d1	(ii) Write the structures of an acidic amino acid, a basic amino acid, a neutral amino acid and an aromatic amino acid present in polypeptide molecules. 10
6.10 (a) 94) 9 93) 91	Define sedimentation coefficient of a polymer. How can one determine the sedimentation average molecular weight of a polymer? 4+16 = 20
ed for	Discuss the synthesis, properties and uses of Teflon. What is the scientific name of Teflon? $10+4+4+2=20$
(a)	(i) How could the bond length of the
6 = 20	heteronuclear diatomic molecule, HCl ³⁵ ,

(9)

(Turn over)

LB - 10/11

be determined using microwave
absorption spectroscopy? 15
State the criteria for a molecule to be
Raman active with respect to pure
rotational and vibrational-rotational

- (b) (i) Rotational spectrum of ⁷⁹Br¹⁹F molecule consists of a series of equidistant lines, 0.71433 cm⁻¹ apart in wave numbers. Calculate the rotational constant, moment of inertia and bond length of the molecule.
- (ii) Find the wave number of the transition,
 J = 9 → J = 10 and indicate the transition that gives the most intense spectral line at 300 K.
- (a) Define Woodward-Fieser rule in UV-Vis spectroscopy. How the rule is employed for
 - (i) Conjugated Dienes and Polyenes and
 - (ii) Conjugated carbonyl compounds?

4+16 = 20

(ii)

changes.

Determine the topicity of the groups or atoms shown in bold in the following compounds: 20

Also give the number of Proton (H) and Carbon (C) signals of the above compounds in the boxes below:

