प्रश्नपुस्तिका क्रमांक BOOKLET No.

G10

प्रश्नपूरितका

एकूण प्रश्न : 100

एकूण गुण : 200

#### चाळणी परीक्षा

वेळ : 1 (एक) तास

#### सूचना

सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व लगेच बदलून घ्यावी.

आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- परीक्षा-क्रमांक शेवटचा अंक केंद्राची संकेताक्षरे
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पढील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परिक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

## ताकीढ

**इ**ग प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपृस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपृस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतृदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली थेळ संपण्याआधी ही प्रश्नपस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल के दोषी व्यक्ती शिक्षेस पात्र होईल.

प्रश्नपुरितकेच्या पुढील अंतिम स्चना

सील ďΰ मूचनेविना पर्यवेक्षसकांच्या

| 1. | In the determination of Ca with AAS, interferences occur due to formation of refractory oxides CaO . $P_2O_5$ and CaO . $SiO_3$ . It can be eliminated by |                                      |            |                                                       |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-------------------------------------------------------|--|--|--|--|
|    |                                                                                                                                                           |                                      |            |                                                       |  |  |  |  |
|    | a. Changing air-acetylene flame to nitrous-oxide-acytlene flame                                                                                           |                                      |            |                                                       |  |  |  |  |
|    | b.                                                                                                                                                        | Decreasing oxygen concentrations     |            |                                                       |  |  |  |  |
|    | c.                                                                                                                                                        | Adding of a releasing agent          |            |                                                       |  |  |  |  |
|    | d.                                                                                                                                                        | Using fuel-rich flame                | (0)        |                                                       |  |  |  |  |
|    | (1)                                                                                                                                                       | a and b only                         | (2)        | a and c only                                          |  |  |  |  |
|    | (3)                                                                                                                                                       | a and d only                         | (4)        | a, b, c and d                                         |  |  |  |  |
| 2. | Iron                                                                                                                                                      | (III) is best determined by uv-visib | le spec    | etroscopy with                                        |  |  |  |  |
|    | (1)                                                                                                                                                       | Thiocyanate                          | (2)        | Acetate                                               |  |  |  |  |
|    | (3)                                                                                                                                                       | Cyanide                              | (4)        | Dimethylglyoxime                                      |  |  |  |  |
| 3. |                                                                                                                                                           | t metal atoms from cathode, The pro  |            | e cathode (Hollow Cathode Lamp) and<br>referred to as |  |  |  |  |
|    | (1)                                                                                                                                                       | Sputtering                           | <b>(2)</b> | Ejectoning                                            |  |  |  |  |
|    | (3)                                                                                                                                                       | Excitation                           | (4)        | Ionisation                                            |  |  |  |  |
| 4. | Mor<br>call                                                                                                                                               |                                      | e time     | taken by an electronic transition. It is              |  |  |  |  |
|    | (1)                                                                                                                                                       | Franck-Condon principle              |            |                                                       |  |  |  |  |
|    | <b>(2)</b>                                                                                                                                                | Born-Oppenheimer approximation       |            |                                                       |  |  |  |  |
|    | (3)                                                                                                                                                       | Lambert-Beer's law                   |            |                                                       |  |  |  |  |
|    | (4)                                                                                                                                                       | None of the above                    |            |                                                       |  |  |  |  |
| 5. |                                                                                                                                                           | flame photometry the negative dev    | viation    | from the straight line are observed                   |  |  |  |  |
|    | (1)                                                                                                                                                       | high concentration                   | <b>(2)</b> | low concentration                                     |  |  |  |  |
|    | (3)                                                                                                                                                       | does not depend on concentration     | (4)        | high temperature                                      |  |  |  |  |
| 6. | In s                                                                                                                                                      | some spectrophotometers a prism is   | used w     | rith a grating which have the following               |  |  |  |  |
|    | adv                                                                                                                                                       | antage(s)                            |            | •                                                     |  |  |  |  |
|    | (1)                                                                                                                                                       | It gives double dispersion and redu  | ices st    | ray light                                             |  |  |  |  |
|    | (2) It eliminates maximum light                                                                                                                           |                                      |            |                                                       |  |  |  |  |
|    | (3)                                                                                                                                                       | It reduces red light                 |            |                                                       |  |  |  |  |
|    | (4) All of the above                                                                                                                                      |                                      |            |                                                       |  |  |  |  |

| <b>7.</b> | In u       | ıv-visib | le spectro | oscopy, for | optim   | um disper  | sion, the slits               | should l | e put      |          |
|-----------|------------|----------|------------|-------------|---------|------------|-------------------------------|----------|------------|----------|
|           | (1)        | as fai   | as possi   | ble .       |         | <b>(2)</b> | as near as p                  | ossible  |            |          |
|           | (3)        | anyw     | here nea   | r each othe | er      | (4)        | None of the                   | above    |            |          |
| 8.        |            |          |            |             |         |            | in the beam                   |          | with the   | sample   |
|           | (1)        | topog    | raphy, m   | orphology   |         | <b>(2)</b> | topography                    | , monogr | aphy       |          |
|           | (3)        | polar    | ography,   | sampling    |         | (4)        | None of the                   | se       |            |          |
| 9.        | The        | emissi   | on spectr  | oscopy is   | useful  | because    | <del>-</del>                  |          |            |          |
|           | (1)        | It is e  | extremely  | sensitive   |         |            |                               | <b>4</b> |            |          |
|           | <b>(2)</b> | It is v  | ery speci  | fic         |         |            |                               |          |            |          |
|           | (3)        | It is s  | ensitive   | as well as  | specifi | c          |                               | •        |            |          |
|           | (4)        | It is 1  | either se  | ensitive no | r speci | fic        |                               |          |            |          |
| 10.       |            | _        | and thir   |             | ng bear | _          | (STEMS) ca<br>eter as small a |          | ed for stu | ıdies of |
| 11.       | The        | omicci   | ion spectr | ea are of   |         |            |                               |          |            |          |
| 11.       | (1)        | Two 1    | _          | a are or    |         | (2)        | Single type                   |          |            |          |
|           | (3)        |          | e types    |             |         | (4)        | Four types                    | -        |            |          |
| 12.       | ——<br>Mat  | ch the   | following  |             |         |            | -                             |          |            |          |
|           | a.         |          | ography    | •           | I.      | $N_2$ gas  |                               |          |            |          |
|           | b.         |          | • •        | ectrolyte   | II.     | Triton X   | <b>Z-100</b>                  |          |            |          |
|           | c.         |          | en is rem  | •           | III.    | KCl        |                               |          |            |          |
|           | d.         |          | ma Supp    |             | IV.     | Jaroslav   | Heyrovsky'                    |          |            |          |
|           |            | а        | b          | c           | d       |            |                               |          |            |          |
|           | (1)        | I        | II         | IV          | III     |            |                               |          |            |          |
|           | (2)        | II       | I          | III         | IV      | •          |                               |          |            |          |
|           | (3)        | III      | IV         | II          | I       |            |                               |          |            |          |
|           | (4)        | IV       | III        | I           | II      |            |                               |          |            |          |
|           |            | . τ 4    |            |             |         |            |                               |          |            |          |

13. In polarography the equation

$$607 \ n \ D^{1/2} \ C \ m^{2/3} \ t^{1/6} \ \left\{ 1 + A \ \frac{D^{1/2} \ t^{1/6}}{m^{1/3}} \right\}$$

Solution

Electrode

Correction

factor

factor

factor

is known as

- (1) Lingane and Loveridge equation
- (2) Ilkovic equation
- (3) Heyrovsky' equation
- (4) None of these
- 14. In amperometry the potential applied between the indicator electrode and reference electrode is
  - (1) changed slowly

(2) changed rapidly

(3) kept constant

- (4) None of these
- 15. In the amperometric titrations, which one is the best example of using rotating platinum electrode
  - (1) Nickel with DMG
  - (2) Lead with dichromate ion
  - (3) Arsenite by KBrO<sub>3</sub>
  - (4) Cu, Co, Pt with α-nitroso-β-naphthol
- 16. In the voltammetry technique following are the statements:
  - a. It is based on the potential-current behaviour of unpolarisable electrode in analyte.
  - b. In which potential of the micro-working electrode is varied and the resulting current is recorded.
  - c. Where, cathodic current is positive and anodic current is negative.
  - d. If the analyte solution is dilute, the current will reach a limiting value.

Which of the above statements is/are correct?

(1) a only

(2) a, b and c only

(3) b, c and d only

(4) a, c and d only

| <b>17.</b> | In stripping voltammetry analysis of solution in the range of | to |  |
|------------|---------------------------------------------------------------|----|--|
|            | is possible.                                                  |    |  |

- (1)  $10^{-6}$  to  $10^{-9}$  M
- (2)  $10^{-4}$  to  $10^{-11}$  M
- (3)  $10^{-3}$  to  $10^{-10}$  M
- (4)  $10^{-9}$  to  $10^{-12}$  M
- 18. The most important requirement/s for electro gravimetric analysis is/are
  - a. The deposition of the substance of interest must be complete.
  - b. The deposit must be inert i.e. it may not undergo any change in its weight during the process of electrolysis.
  - c. The deposit must be of known composition.
  - d. The deposit must adhere firmly so that the electrode can be rised and weighted without loss.

Which of the above statements is/are correct?

(1) a only

(2) a and b only

(3) a, c and d only

- (4) All of the above
- 19. In the voltammetry technique, substance from analyte reduced or oxidised at a micro-electrode is said to be
  - (1) depolariser

(2) polariser

(3) semi-polariser

- (4) None of these
- 20. In the determination of copper by electrogravimetry, when solution is electrolysed with an emf 2-3 volts; then the following reactions occur:
  - $Cu^{2\oplus} + 2e^{\ominus} \rightleftharpoons Cu$ ;  $2H^{\oplus} + 2e^{\ominus} \rightleftharpoons H_2$
  - $4OH^{\ominus} \rightleftharpoons O_2 + 2H_2O + 4e^{\ominus}$

Which ions go for reduction and deposited?

(1) Cu<sup>⊕</sup>

(2) H<sup>+</sup>

(3)  $Cu^{2\oplus}$  and  $H^{\oplus}$ 

(4) None of the above

| 21.           | •          | lic voltammetry can be applied to electrode as well as to                                              |          |  |  |  |  |  |  |  |
|---------------|------------|--------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|--|
|               | mer        | mercury drop and to reaction for which stripping analysis is due to                                    |          |  |  |  |  |  |  |  |
|               |            | irreversible electrode process.                                                                        |          |  |  |  |  |  |  |  |
|               | (1)        | stationary, single, inapplicable, highly                                                               |          |  |  |  |  |  |  |  |
|               | (2)        | moving, single, applicable, slowly                                                                     |          |  |  |  |  |  |  |  |
|               | (3)        | stationary, double, inapplicable, highly                                                               |          |  |  |  |  |  |  |  |
|               | (4)        | moving, double, applicable, slowly                                                                     |          |  |  |  |  |  |  |  |
| 22.           | Elec       | ctromagnetic radiation is characterised by                                                             |          |  |  |  |  |  |  |  |
|               | (1)        | Amplitude                                                                                              |          |  |  |  |  |  |  |  |
|               | <b>(2)</b> | Periodicity                                                                                            |          |  |  |  |  |  |  |  |
|               | (3)        | Wavelength and wave number of frequency                                                                |          |  |  |  |  |  |  |  |
|               | (4)        | All of the above                                                                                       |          |  |  |  |  |  |  |  |
| 23.           | The        | The region of greatest importance for emission analysis is                                             |          |  |  |  |  |  |  |  |
|               | (1)        | 200 + 300 nm                                                                                           |          |  |  |  |  |  |  |  |
|               | <b>(2)</b> | 200 + 500 nm                                                                                           |          |  |  |  |  |  |  |  |
|               | (3)        | 250 + 400 nm                                                                                           |          |  |  |  |  |  |  |  |
|               | (4)        | 400 + 600 nm                                                                                           |          |  |  |  |  |  |  |  |
| <br>24.       | In a       | imperometry either the titrant (reagent) or the species being titrated should be                       | _        |  |  |  |  |  |  |  |
|               | (1)        | Radioactive                                                                                            |          |  |  |  |  |  |  |  |
|               | (2)        | Photoactive                                                                                            |          |  |  |  |  |  |  |  |
|               | (3)        | Electroactive                                                                                          |          |  |  |  |  |  |  |  |
|               | (4)        | Gas sensitive                                                                                          |          |  |  |  |  |  |  |  |
| 25.           |            | The polarographic method may be used for the determination of which of the following inorganic anions? |          |  |  |  |  |  |  |  |
|               | <b>(1)</b> | Cyanide                                                                                                |          |  |  |  |  |  |  |  |
|               | <b>(2)</b> | Bromide                                                                                                |          |  |  |  |  |  |  |  |
|               | (3)        | Dichromate                                                                                             |          |  |  |  |  |  |  |  |
|               | (4)        | All of the above                                                                                       |          |  |  |  |  |  |  |  |
| <u>कच्च्य</u> | ा कामार    | प्राठी जागा / SPACE FOR ROUGH WORK P.T.                                                                | <u> </u> |  |  |  |  |  |  |  |

| <b>26.</b> | The         | sampling of gas filled cylinder is don                                                                              | ne by       |                                                                                      |  |  |  |  |  |
|------------|-------------|---------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------|--|--|--|--|--|
|            | (1)         | Stack sampling                                                                                                      | (2)         | Flushing sampling                                                                    |  |  |  |  |  |
|            | (3)         | Ambient sampling                                                                                                    | (4)         | Random sampling                                                                      |  |  |  |  |  |
| 27.        | ——<br>The   | retention factor for a particular solu                                                                              | ıte dep     | pends upon                                                                           |  |  |  |  |  |
|            | (1)         | Stationary phase                                                                                                    | <b>(2</b> ) | Mobile phase                                                                         |  |  |  |  |  |
|            | (3)         | Both (1) and (2)                                                                                                    | (4)         | None of these                                                                        |  |  |  |  |  |
| 28.        | Whi         | ch one of the following is a limitation                                                                             | ns of F     | IPTLC ?                                                                              |  |  |  |  |  |
|            | (1)         | It requires an internal standard                                                                                    |             |                                                                                      |  |  |  |  |  |
|            | <b>(2)</b>  | It is not useful in herbal analysis                                                                                 |             |                                                                                      |  |  |  |  |  |
|            | (3)         | It cannot be fully automated                                                                                        |             |                                                                                      |  |  |  |  |  |
|            | (4)         | The mobile phase consumptions of                                                                                    | sampl       | e is high                                                                            |  |  |  |  |  |
| 29.        | TLO         | is a separation technique based on                                                                                  |             |                                                                                      |  |  |  |  |  |
|            | (1)         | Solubility                                                                                                          | <b>(2</b> ) | Adsorption                                                                           |  |  |  |  |  |
|            | (3)         | Partition                                                                                                           | <b>(4</b> ) | Fractional distillation                                                              |  |  |  |  |  |
| 30.        | Whi         | ch of the following statements about                                                                                | t prea      | mplifier, IF amplifier and RF amplifier                                              |  |  |  |  |  |
|            |             | rong?                                                                                                               | •           | •                                                                                    |  |  |  |  |  |
|            | (1)         | The outputs of IF and RF amplifier                                                                                  | s are       | adjustable                                                                           |  |  |  |  |  |
|            | <b>(2</b> ) | A preamplifier is located near or in                                                                                | side a      | probe                                                                                |  |  |  |  |  |
|            | (3)         | They are all frequency tunable amplifiers                                                                           |             |                                                                                      |  |  |  |  |  |
|            |             |                                                                                                                     | puner       | 5                                                                                    |  |  |  |  |  |
|            | (4)         | RF amplifier has a linear depender                                                                                  | •           |                                                                                      |  |  |  |  |  |
| 31.        |             |                                                                                                                     | nce of      | attenuation                                                                          |  |  |  |  |  |
| 31.        |             | RF amplifier has a linear depender                                                                                  | nce of      | attenuation                                                                          |  |  |  |  |  |
| 31.        | Hov         | RF amplifier has a linear depender w many signals will diethyl ether give                                           | nce of a    | attenuation  MR spectra ?                                                            |  |  |  |  |  |
| 31.        | Hov (1) (3) | RF amplifier has a linear depender with many signals will diethyl ether give One Three                              | (2)         | attenuation  MR spectra ?  Two                                                       |  |  |  |  |  |
|            | How (1) (3) | RF amplifier has a linear depender with many signals will diethyl ether give One Three                              | (2) (4)     | attenuation  MR spectra ?  Two  Four  cm <sup>-1</sup> in the IR spectrum of unknown |  |  |  |  |  |
|            | How (1) (3) | RF amplifier has a linear depender  many signals will diethyl ether give One Three  absence of double band at about | (2) (4)     | attenuation  MR spectra ?  Two  Four  cm <sup>-1</sup> in the IR spectrum of unknown |  |  |  |  |  |

| 33.  | When a molecule absorbs uv or visible light of frequency $\nu$ or wavelength $\lambda$ , an electron undergoes a transition from a lower to a higher energy level. The energy difference $\Delta E$ is given by |                                                                                    |                 |               |                                        |                                                                    |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------|---------------|----------------------------------------|--------------------------------------------------------------------|--|--|--|--|
|      | (1)                                                                                                                                                                                                             | $\Delta \mathbf{E} = \mathbf{h} \mathbf{v}$                                        | ·               | (2)           | $\Delta \mathbf{E} = \mathbf{h}$       | hev                                                                |  |  |  |  |
|      | (3)                                                                                                                                                                                                             | $\Delta \mathbf{E} = \frac{1}{2}  \mathbf{m} \mathbf{v}^2$                         |                 | (4)           | $\Delta \mathbf{E} = \frac{\sigma}{2}$ | <u>c</u> λ                                                         |  |  |  |  |
| 34.  | $\mathbf{w}\mathbf{h}\mathbf{i}$                                                                                                                                                                                |                                                                                    | rated compou    |               |                                        | ne n – σ* electronic transitio<br>netero atoms S, N, Br and I is α |  |  |  |  |
|      | (1)                                                                                                                                                                                                             | They are inact                                                                     | ive             |               |                                        |                                                                    |  |  |  |  |
|      | <b>(2)</b>                                                                                                                                                                                                      | Their absorpti                                                                     | on is just abo  | ve 700 nm     |                                        |                                                                    |  |  |  |  |
|      | (3)                                                                                                                                                                                                             | Their absorpti                                                                     | on is just belo | w 200 nm      |                                        |                                                                    |  |  |  |  |
|      | (4)                                                                                                                                                                                                             | The bond rupt                                                                      | ures            |               |                                        |                                                                    |  |  |  |  |
| 35.  | In u                                                                                                                                                                                                            | In uv-visible spectrum, the term auxochrome is used to designate groups possessing |                 |               |                                        |                                                                    |  |  |  |  |
|      | (1)                                                                                                                                                                                                             | (1) bonding electron pairs conjugated with a $\pi$ -bond system.                   |                 |               |                                        |                                                                    |  |  |  |  |
|      | <b>(2)</b>                                                                                                                                                                                                      | (2) non-bonding electrons pairs conjugated with a $\pi$ -bond system.              |                 |               |                                        |                                                                    |  |  |  |  |
|      | (3)                                                                                                                                                                                                             | bonding electron pair conjugated with a $\sigma$ bond system.                      |                 |               |                                        |                                                                    |  |  |  |  |
|      | (4)                                                                                                                                                                                                             | non-bonding el                                                                     | ectron pair co  | onjugated wit | h a σ-bo                               | ond system.                                                        |  |  |  |  |
| 36.  | The                                                                                                                                                                                                             | strength of Ear                                                                    | th's magnetic   | field is abou | t                                      | gauss.                                                             |  |  |  |  |
|      | (1)                                                                                                                                                                                                             | 0.10                                                                               |                 | (2)           | 0.57                                   |                                                                    |  |  |  |  |
|      | (3)                                                                                                                                                                                                             | 0.23                                                                               |                 | (4)           | 0.37                                   |                                                                    |  |  |  |  |
| 37.  | The                                                                                                                                                                                                             | shiference compound                                                                | _               |               | bsorptio                               | on peak relative to that of                                        |  |  |  |  |
|      | (1)                                                                                                                                                                                                             | red                                                                                |                 | (2)           | blue                                   |                                                                    |  |  |  |  |
|      | (3)                                                                                                                                                                                                             | chemical                                                                           |                 | (4)           | red and                                | nd blue                                                            |  |  |  |  |
| 38.  | In<br>deu                                                                                                                                                                                                       | NM<br>terochloroform a                                                             | _               |               | •                                      | tly carbon tetrachloride an                                        |  |  |  |  |
|      | (1)                                                                                                                                                                                                             | <sup>1</sup> H                                                                     |                 | (2)           | $^{13}\mathrm{C}$                      |                                                                    |  |  |  |  |
|      | (3)                                                                                                                                                                                                             | $^{15}N$                                                                           |                 | (4)           | $^{19}\mathrm{F}$                      |                                                                    |  |  |  |  |
| कच्च | ा कामार                                                                                                                                                                                                         | माठी जागा / SPACE                                                                  | FOR ROUGH       | WORK          |                                        | P.T.C                                                              |  |  |  |  |

| <b>39.</b> | In _                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ analysis                                                                                                              | , gas chro                    | matogra                                       | ph sepa                       | rates the            | componer    | its of the  |
|------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------|-------------------------------|----------------------|-------------|-------------|
|            |                                               | ture while mentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the mass                                                                                                                | s spectron                    | ieter gi                                      | ves the                       | structur             | al inform   | ation via   |
|            | (1)                                           | GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         |                               | (2)                                           | MS                            |                      |             |             |
|            | (3)                                           | GC – MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         |                               | (4)                                           | Chemic                        | cal                  |             |             |
| 40.        |                                               | loss of an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                       | •                             | •                                             | _                             | · ·                  | •           | compound    |
|            |                                               | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hydrogei                                                                                                                | ns is terme                   |                                               | _                             | rearrange            | ement.      |             |
|            | (1)                                           | α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                               | (2)                                           | β                             |                      |             |             |
|            | (3)                                           | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                               | (4)                                           | δ                             |                      |             |             |
| 41.        | If a                                          | n organic co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ompound is                                                                                                              | not absorb                    | ed in uv                                      | radiatio                      | ons, it me           | ans that it | does not    |
|            | (1)                                           | Sigma bon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d                                                                                                                       |                               |                                               |                               |                      |             |             |
|            | (2)                                           | Single bon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |                               |                                               |                               |                      |             |             |
|            | (3)                                           | Dative bon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |                               |                                               |                               |                      |             |             |
|            | <b>(4)</b>                                    | Conjugate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | double ben                                                                                                              | ,                             |                                               |                               |                      |             |             |
|            | (4)                                           | Conjugate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | double boil                                                                                                             | ď                             |                                               |                               |                      |             |             |
|            | Whi                                           | ch of the f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>                                                                                                             |                               | s <i>not</i> cl                               | hanged                        | at a diffe           | rent magn   | netic field |
|            | Whi                                           | ch of the f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>                                                                                                             | uantities is                  |                                               | hanged a                      | at a diffe           | rent magn   | netic field |
| 42.        | Whi<br>stre                                   | ch of the f<br>ngth?<br>Chemicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | following qu                                                                                                            | uantities is                  |                                               | _                             | at a diffe           | rent magn   | netic field |
|            | Whi<br>stre<br>(1)                            | ch of the f<br>ngth?<br>Chemicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | following queshift (in Her                                                                                              | uantities is                  |                                               | _                             | at a diffe           | rent magr   | netic field |
| <b>42.</b> | Whi<br>stre<br>(1)<br>(2)                     | ch of the fingth? Chemical s Nucleus sp Coupling c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | following quantities on stant (J)                                                                                       | uantities is                  | iergy sta                                     | te                            |                      |             |             |
| 42.        | Whi<br>stre<br>(1)<br>(2)<br>(3)<br>(4)       | ch of the fingth? Chemical s Nucleus sp Coupling c Energy di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Following quantities on stant (J) ofference becaumber                                                                   | uantities in rtz) on in an en | ergy sta<br>energy                            | te<br>states                  | of nuclei            | with non-   |             |
|            | Whi<br>stre<br>(1)<br>(2)<br>(3)<br>(4)       | ch of the f<br>ngth?<br>Chemicals<br>Nucleus sp<br>Coupling c<br>Energy dia<br>quantum r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | collowing question populationstant (J) fference becaumber                                                               | uantities in rtz) on in an en | ergy sta<br>energy                            | te<br>states<br>ctrum is      | of nuclei            | with non-   |             |
|            | Whi stre (1) (2) (3) (4)                      | ch of the fingth? Chemical s Nucleus sp Coupling c Energy dia quantum r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | collowing question populationstant (J) fference becomber ak at m/z –                                                    | uantities in rtz) on in an en | ergy sta<br>energy                            | te<br>states<br>ctrum is      | of nuclei due to the | with non-   |             |
|            | Whi stre (1) (2) (3) (4)  The (1) (3)         | ch of the fingth? Chemical s Nucleus sp Coupling c Energy dir quantum r base ion per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | collowing question populationstant (J) fference becaumber ak at m/z -                                                   | uantities is rtz) on in an en | ergy sta<br>energy<br>nass spec<br>(2)<br>(4) | states ctrum is Carbon Acetyl | of nuclei due to the | with non-   |             |
| 43.        | Whi stre (1) (2) (3) (4)  The (1) (3)         | ch of the fingth? Chemical s Nucleus sp Coupling c Energy dia quantum r base ion per Methoxy gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | collowing queshift (in Heroin populationstant (J) fference becamber  ak at m/z - roup oup                               | uantities is rtz) on in an en | ergy sta<br>energy<br>nass spec<br>(2)<br>(4) | states ctrum is Carbon Acetyl | of nuclei due to the | with non-   |             |
| 43.        | Whi stre (1) (2) (3) (4)  The (1) (3)         | ch of the fingth? Chemical s Nucleus sp Coupling of Energy different differe | collowing queshift (in Heroin populationstant (J) fference becamber  ak at m/z - roup oup eadily exchauproton           | uantities is rtz) on in an en | ergy sta<br>energy<br>nass spec<br>(2)<br>(4) | states ctrum is Carbon Acetyl | of nuclei due to the | with non-   |             |
| 43.        | Whi stre (1) (2) (3) (4)  The (1) (3) Whi (1) | ch of the fingth? Chemical s Nucleus sp Coupling c Energy dir quantum r base ion per Methoxy gr Methyl gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | collowing queshift (in Heroin populationstant (J) fference becamber  ak at m/z - roup oup eadily exchauproton on proton | uantities is rtz) on in an en | ergy sta<br>energy<br>nass spec<br>(2)<br>(4) | states ctrum is Carbon Acetyl | of nuclei due to the | with non-   |             |

| <b>45.</b>      |                                                                        | is used as a reference standard in NMR spectroscopy. |               |                                         |  |  |  |  |  |
|-----------------|------------------------------------------------------------------------|------------------------------------------------------|---------------|-----------------------------------------|--|--|--|--|--|
|                 | (1)                                                                    | Tetramethylsilane                                    | (2)           | Trimethylsilane                         |  |  |  |  |  |
|                 | (3)                                                                    | Dimethyl Sulphone                                    | (4)           | Dimethyl Sulphoxide                     |  |  |  |  |  |
| 46.             |                                                                        | - v ·                                                |               | arrangements, the most frequently       |  |  |  |  |  |
|                 |                                                                        | ountered example is the McL                          | afferty rearr | angement which involves the transfer    |  |  |  |  |  |
|                 | of                                                                     | TT                                                   |               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |  |  |  |  |
|                 | (1)                                                                    | α-H atom in an unsaturated state                     | i system via  | a low energy six-membered transition    |  |  |  |  |  |
|                 | (2)                                                                    | N-atom in aldehyde system                            |               |                                         |  |  |  |  |  |
|                 | (3)                                                                    | β-hydrogen atom in an unsat                          | turated syste | em                                      |  |  |  |  |  |
|                 | (4)                                                                    | γ-H atom in an unsaturated                           | system        |                                         |  |  |  |  |  |
| <u>-</u><br>47. | Hov                                                                    | v many signals will be obtaine                       | d in the PMI  | R spectra of propan-2-ol?               |  |  |  |  |  |
|                 | (1)                                                                    | One                                                  | (2)           | Two                                     |  |  |  |  |  |
|                 | (3)                                                                    | Three                                                | (4)           | Four                                    |  |  |  |  |  |
| 48.             |                                                                        | · · · ·                                              | ımple, a sma  | ll amount of is added as a              |  |  |  |  |  |
|                 |                                                                        | erence.                                              |               |                                         |  |  |  |  |  |
|                 | (1)                                                                    | Dimethylformamide                                    |               |                                         |  |  |  |  |  |
|                 | <b>(2</b> )                                                            | Dimethyl sulfoxide                                   |               |                                         |  |  |  |  |  |
|                 | (3)                                                                    | Tetramethylsilane                                    |               |                                         |  |  |  |  |  |
|                 | (4)                                                                    | Tetramethyl silanol                                  |               |                                         |  |  |  |  |  |
| 49.             | The peak of highest intensity in a mass spectrum is referred to as the |                                                      |               |                                         |  |  |  |  |  |
|                 | (1)                                                                    | Front peak                                           | (2)           | Base peak                               |  |  |  |  |  |
|                 | (3)                                                                    | Molecular peak                                       | (4)           | Back peak                               |  |  |  |  |  |
| 50.             | In NMR spectroscopy the tau scale value is                             |                                                      |               |                                         |  |  |  |  |  |
|                 | (1)                                                                    | $\tau = 10 - \sigma$                                 |               | \                                       |  |  |  |  |  |
|                 | <b>(2</b> )                                                            | $\tau = 10 - \beta$                                  |               |                                         |  |  |  |  |  |
|                 | (3)                                                                    | $\tau = 10 - \delta$                                 |               |                                         |  |  |  |  |  |
|                 | (4)                                                                    | $\tau = 10 - \gamma$                                 |               |                                         |  |  |  |  |  |
| कच्च्य          | ा कामार                                                                | प्ताठी जागा / SPACE FOR ROUGH                        | WORK          | P.T.O.                                  |  |  |  |  |  |

**51.** 

Which of the following is the Henderson -Hasselbalch equation?

|            | (1) $pH = pKa + log \frac{[acid]}{[salt]}$                                                              | (2)        | $pH = \frac{pKw}{pOH}$                          |
|------------|---------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------|
|            | (3) $pH = \frac{pOH}{pKw}$                                                                              | (4)        | $pH = pKa + log \frac{[salt]}{[acid]}$          |
| <b>52.</b> | Which serological technique utilises antigen and test antigen for detection?                            |            | tition between radioisotope labelled            |
|            | (1) Flow cytometry                                                                                      |            | Immunoelectrophoresis                           |
|            | (3) Radioimmuno assay                                                                                   | (4)        | Immunofluorescence assay                        |
| 53.        | To identify an individual on the basis                                                                  | s of DN    | A analysis of the blood, investigators          |
|            | (1) RNA primers                                                                                         | <b>(2)</b> | DNA fingerprints                                |
|            | (3) DNA probes                                                                                          | (4)        | nucleosomes                                     |
| 54.        | The buffering capacity of a buffer is macid used in the preparation of the buff                         |            | n at pH equal to of a weak                      |
|            | (1) 2 pKa (2) pKa                                                                                       | (3)        | pKa + 1 (4) pKa – 1                             |
| 55.        | The specific palindrome sequence as endonuclease EcoRI is                                               |            |                                                 |
|            | $(1)  G^{\downarrow}AATTC \qquad (2)  A^{\downarrow}AGCTT$                                              | (3)        | $GTT^{\downarrow}AAC$ (4) $C^{\downarrow}AATGC$ |
| <b>56.</b> | Isoenzymes are enzymes that                                                                             |            |                                                 |
|            | (1) Catalyse the same reaction                                                                          |            |                                                 |
|            | (2) Do not catalyse the same reaction                                                                   | l          |                                                 |
|            | (3) Have same $K_m$ and $V_{max}$                                                                       |            |                                                 |
|            | (4) Have identical amino acid compos                                                                    | sition an  | d sequence                                      |
| 57.        | Okazaki fragments are synthesized by                                                                    | DNA po     | olymerase during                                |
|            | (1) DNA replication                                                                                     | <b>(2)</b> | Translation                                     |
|            | (3) Cloning                                                                                             | (4)        | Transcription                                   |
| 58.        | The heat stable isozyme of alkaline alanine and is characteristically seen in liver and gut is named as |            | · · · · · · · · · · · · · · · · · · ·           |
|            | (1) Leukocyte alkaline phosphatase                                                                      | <b>(2)</b> | Beta isozyme                                    |
|            | (3) Regan isoenzyme                                                                                     | <b>(4)</b> | Pre-beta alkaline phosphatase                   |

| 59.      | <ul> <li>Which key feature of Taq polymerase allows PCR to be conveniently performed?</li> <li>(1) Taq polymerase does not require primers.</li> <li>(2) Taq polymerase does not require templates.</li> <li>(3) Taq polymerase is heat stable.</li> <li>(4) Taq polymerase can work at very low temperatures.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                              |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------|--|--|--|--|
| 60.      | In liver disease the elevated serum LD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )H is pri                 | imarily due to increase in                   |  |  |  |  |
|          | (1) $LDH - 1$ and $LDH - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>(2)</b>                | LDH - 2 and $LDH - 3$                        |  |  |  |  |
|          | (3) LDH – 3 and LDH – 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(4)</b>                | LDH - 4 and LDH - 5                          |  |  |  |  |
| 61.      | In radioimmunoassay, the commonly half-life of about 60 days is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | used ga                   | -                                            |  |  |  |  |
|          | (1) ${}^{3}H$ (2) ${}^{125}I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3)                       | $^{131}$ I (4) $^{57}$ Co                    |  |  |  |  |
| 62.      | The K <sub>m</sub> of an enzyme is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                              |  |  |  |  |
|          | (1) one half of $V_{ m max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                              |  |  |  |  |
|          | (2) a dissociation constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                                              |  |  |  |  |
|          | (3) the substrate concentration at ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ılf the m                 | naximal velocity                             |  |  |  |  |
|          | (4) the substrate concentration at th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e maxin                   | nal velocity                                 |  |  |  |  |
| 63.      | DNA fingerprinting is based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                              |  |  |  |  |
|          | (1) Non-repetitive sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>(2)</b>                | Sequence polymorphism                        |  |  |  |  |
|          | (3) Constant tandem repeats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4)                       | Variable number tandem repeats               |  |  |  |  |
| 64.      | The most suitable traditional method on reaction of aromatic amino acids wi  (1) Micro-Kjeldahl method  (3) Folin-Ciocalteu (Lowry) method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | th phosical (2)           | pho-tungstic acid is<br>Nephalometric method |  |  |  |  |
| 65.      | The degree of unsaturation in a lipid is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s measu:                  |                                              |  |  |  |  |
|          | (1) Saponification number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2)                       | Iodine number                                |  |  |  |  |
|          | (3) Acid number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4)                       | Reichert–Meissl number                       |  |  |  |  |
| 36.      | In reverse transcriptase PCR method polymerase and reverse transcriptase from.  (1) Escherichia coli (Korenberg's enz.)  (3) Thermus termophilus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e activit                 | · ·                                          |  |  |  |  |
| 67.      | The buffer which is used for nucleic a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <br>acids se <sub>l</sub> | paration and typically contains EDTA         |  |  |  |  |
|          | has low ionic strength and pH range of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f 7·5 - 7·                |                                              |  |  |  |  |
|          | (1) Phosphate buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                       | Acetate buffer                               |  |  |  |  |
|          | (3) Barbitone buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4)                       | Tris-Phosphate buffer                        |  |  |  |  |
| कुच्च्या | ा कामासाठी जागा / SPACE FOR ROUGH WOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <br>К                     | P.T.O                                        |  |  |  |  |
| - 1      | The state of the s |                           | 1.1.0                                        |  |  |  |  |

| <b>68.</b> | Wha                                                                                                                                                                                                                  | at is the role of sodium dodecyl sulp                                     | hate (S    | DS) in SDS-PAGE?                                                              |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|
|            | (1) Protein unfolding                                                                                                                                                                                                |                                                                           |            |                                                                               |  |  |  |  |  |  |
|            | <b>(2)</b>                                                                                                                                                                                                           | (2) Imparting net positive charge to the protein                          |            |                                                                               |  |  |  |  |  |  |
|            | (3)                                                                                                                                                                                                                  | Imparting equal mass to all protein                                       | ins        |                                                                               |  |  |  |  |  |  |
|            | (4)                                                                                                                                                                                                                  | Protein denaturing and imparting                                          | net ne     | gative charge to the protein                                                  |  |  |  |  |  |  |
| 69.        |                                                                                                                                                                                                                      | ich of the following techniques is u<br>gth Polymorphism (RFLPs)?         | sed for    | the detection of Restriction Fragment                                         |  |  |  |  |  |  |
|            | (1)                                                                                                                                                                                                                  | Northern blotting                                                         | <b>(2)</b> | Southern blotting                                                             |  |  |  |  |  |  |
|            | (3)                                                                                                                                                                                                                  | Western blotting                                                          | (4)        | Eastern blotting                                                              |  |  |  |  |  |  |
| 70.        |                                                                                                                                                                                                                      | teins when heated with concentrat<br>OH is added, deep orange colour is o |            | ic acid give a yellow colour and when<br>I. This test is known as             |  |  |  |  |  |  |
|            | (1)                                                                                                                                                                                                                  | Xanthoproteic test                                                        | <b>(2)</b> | Hoppe's test                                                                  |  |  |  |  |  |  |
|            | (3)                                                                                                                                                                                                                  | Acid-base test                                                            | (4)        | Biuret test                                                                   |  |  |  |  |  |  |
| 71.        | Prenatal diagnosis is a wide array of genetic diseases is best done by                                                                                                                                               |                                                                           |            |                                                                               |  |  |  |  |  |  |
|            | <b>(1)</b>                                                                                                                                                                                                           | PCR                                                                       | <b>(2)</b> | Linkage analysis                                                              |  |  |  |  |  |  |
|            | (3)                                                                                                                                                                                                                  | RFLP                                                                      | (4)        | Cytometry                                                                     |  |  |  |  |  |  |
| 72.        | Whi                                                                                                                                                                                                                  | ich of the following is required for D                                    | NA syn     | thesis but not for RNA synthesis?                                             |  |  |  |  |  |  |
|            | (1)                                                                                                                                                                                                                  | Nucleotides (2) Sugar                                                     | (3)        | Polymerase (4) Primer                                                         |  |  |  |  |  |  |
| 73.        |                                                                                                                                                                                                                      | ich of the following seperation tech                                      | niques     | depends on the molecular size of the                                          |  |  |  |  |  |  |
|            | (1)                                                                                                                                                                                                                  | ISO electric focussing                                                    | <b>(2)</b> | Gel filtration chromatography                                                 |  |  |  |  |  |  |
|            | (3)                                                                                                                                                                                                                  | Ion-exchange chromatography                                               | (4)        | Affinity chromatography                                                       |  |  |  |  |  |  |
| 74.        | method is used for quantitation of the viruses present in a sample (for example viral load in HIV or HBV), which would help in planning of the treatment modalities and assessment of the response to the treatment. |                                                                           |            |                                                                               |  |  |  |  |  |  |
|            | (1)                                                                                                                                                                                                                  | Nested PCR                                                                | (2)        | Real Time PCR                                                                 |  |  |  |  |  |  |
|            | (3)                                                                                                                                                                                                                  | RACE- PCR                                                                 | (4)        | Multiplex- PCR                                                                |  |  |  |  |  |  |
| 75.        |                                                                                                                                                                                                                      |                                                                           |            | sma, accounting for 65% of buffering , that regulate pH between $7.35 - 7.45$ |  |  |  |  |  |  |
|            | (1)                                                                                                                                                                                                                  | Hemoglobin buffer                                                         | (2)        | Protein buffer                                                                |  |  |  |  |  |  |
|            | (3)                                                                                                                                                                                                                  | Bicarbonate buffer                                                        | (4)        | Acetate buffer                                                                |  |  |  |  |  |  |
|            |                                                                                                                                                                                                                      |                                                                           |            |                                                                               |  |  |  |  |  |  |

- 76. The solubility product of barium sulphate at 298 K is  $1\cdot1\times10^{-10}$ . Which one of the following cases, on mixing equal volumes of two solutions at 298 K, shall precipitate barium sulphate?
  - (1)  $1.1 \times 10^{-5}$  M barium nitrate and  $1.1 \times 10^{-6}$  M sulphuric acid
  - (2)  $1.1 \times 10^{-3}$  M barium chloride and  $1.1 \times 10^{-8}$  M sodium sulphate
  - (3)  $1.1 \times 10^{-5}$  M barium nitrate and  $1.1 \times 10^{-5}$  M potassium sulphate
  - (4) None of these
- 77. Calculate the number of moles of  $H_2O$  produced per mole of magnesium:

 $Mg + HNO_3 \longrightarrow Mg(NO_3)_2 + NH_4NO_3 + H_2O$ 

 $(1) \quad \frac{3}{4}$ 

 $(2) \frac{4}{3}$ 

(3) 1

- (4) None of these
- 78. The correct statements among the following are:
  - a. The alkali salts are largely adsorbed by the porous charcoal.
  - b. The oxides of noble metals eg. Ag are decomposed without the aid of charcoal to the metal, which is often obtained as a globule, and oxygen.
  - c. The oxides of Pb, Cu are reduced to a fused metallic globule.
  - d. The oxides of Zn, Cd are readily reduced to the metal, but these are so volatile that they vaporize.
  - (1) a, c and d only

(2) a, b and c only

(3) b, c and d only

- (4) All of the above
- 79. 800 cm<sup>3</sup> of ozonised oxygen at NTP were passed through potassium iodide solution. The iodine liberated required 200 cm<sup>3</sup> of 0·1 N sodium thiosulphate for titration. Calculate the percent volume of ozone in the mixture.

O = 16, K = 39, Na = 23, S = 32, I = 127

(1) 14%

(2) 56%

(3) 28%

(4) None of these

80. Match the following Flame tests (List I) with Colouration observed through cobalt glass (List II):

|            | List 1    | !    |      | List II       |
|------------|-----------|------|------|---------------|
| a.         | Sodiu     | n    | I.   | Bluish green  |
| b.         | Potass    | sium | II.  | Purple        |
| c.         | Stront    | ium  | III. | Crimson       |
| d.         | Bariu     | n    | IV.  | Golden yellow |
|            |           |      | V.   | No colour     |
|            |           |      | VI.  | Apple green   |
|            | a         | b    | c    | d             |
| <b>(1)</b> | ſV        | III  | II   | VI            |
| <b>(2)</b> | <b>IV</b> | II   | III  | VI            |
| (3)        | V         | III  | II   | I             |
| <b>(4)</b> | II        | IV   | I    | v             |
|            |           |      |      |               |

81. The volume strength of  $H_2O_2$  solution is the volume of  $O_2$  in cm<sup>3</sup> evolved at NTP on complete decomposition of 1 cm<sup>3</sup> of the  $H_2O_2$  solution. 25 cm<sup>3</sup> of \_\_\_\_\_\_ volume  $H_2O_2$  solution would decolourize 100 cm<sup>3</sup> of 0.25 N acidified KMnO<sub>4</sub> solution. (H = 1, O = 16)

- $(1) \quad 5.6$
- (2) 6.5
- (3) 25
- (4) 100

82. 10 cm<sup>3</sup> of the solution containing a mixture of oxalic acid and potassium oxalate is titrated against 0·1 N NaOH. At exactly 5·0 cm<sup>3</sup>, the phenolphthalein indicator in the solution became pink. 25 cm<sup>3</sup> of the same solution containing oxalic acid and potassium oxalate is heated with 25 cm<sup>3</sup> of dil. H<sub>2</sub>SO<sub>4</sub>. The hot solution is titrated against 0·1 N KMnO<sub>4</sub> solution. Exactly at 20 cm<sup>3</sup>, the KMnO<sub>4</sub> drop was decolorized. The amount of oxalic acid and potassium oxalate in 500 cm<sup>3</sup> of the solution is \_\_\_\_\_ and \_\_\_\_\_ respectively.

(H = 1, C = 12, O = 16, K = 39)

(1) 1.80 g, 1.66 g

(2)  $3.60 \, \text{g}, \, 3.32 \, \text{g}$ 

(3) 1.80 g, 3.32 g

(4)  $3.6 \,\mathrm{g}, \, 1.66 \,\mathrm{g}$ 

83. 25 cm<sup>3</sup> of aqueous solution with 0·1 M with reference to a substance is equilibrated with 10 cm<sup>3</sup> of ether. At equilibrium the aqueous layer contained 0·5 millimol of the substance. Calculate the percent extraction.

- (1) 97.50%
- (2) 80%
- (3) 95.25%
- (4) None of these

| <b>84.</b> | Bor                     | ax bead t                                                           | est is                                        | perform                       | ned in a                          | n oxid  | lizing f   | lame : Match                                           | the colu             | mns:                                                       |
|------------|-------------------------|---------------------------------------------------------------------|-----------------------------------------------|-------------------------------|-----------------------------------|---------|------------|--------------------------------------------------------|----------------------|------------------------------------------------------------|
|            |                         | Hot                                                                 |                                               | Cold                          | l                                 |         |            | Metal                                                  |                      |                                                            |
|            | a.                      | Green                                                               |                                               | Blue                          | ;                                 |         | I.         | Chromium                                               |                      |                                                            |
|            | b.                      | Yellow                                                              |                                               | Gree                          | en .                              |         | II.        | Nickel                                                 |                      |                                                            |
|            | c.                      | Violet                                                              |                                               | Red                           | dish bro                          | wn :    | III.       | Cobalt                                                 |                      |                                                            |
|            | d.                      | Blue                                                                |                                               | Blue                          | •                                 |         | IV.        | Copper                                                 |                      |                                                            |
|            |                         | a                                                                   | b                                             | c                             | d                                 |         |            |                                                        |                      |                                                            |
|            | <b>(1)</b>              | I                                                                   | III                                           | IV                            | I                                 | [       |            |                                                        |                      |                                                            |
|            | <b>(2</b> )             | II                                                                  | Ι                                             | IV                            | II.                               | II      |            |                                                        |                      |                                                            |
|            | (3)                     | IV                                                                  | I                                             | III                           | []                                | [       |            |                                                        |                      |                                                            |
|            | (4)                     | IV                                                                  | I                                             | II                            | I                                 | ΙΙ      |            |                                                        | •                    |                                                            |
| 85.        | Cal                     | culate the                                                          | — <del>–</del><br>е рН о                      | f 0·01 I                      | M sodiu                           | m phe   | noxide     | at 298 K.                                              |                      |                                                            |
|            | k <sub>w</sub> :        | = 10 <sup>-14</sup> , i                                             | onisat                                        | ion con                       | stant of                          | phene   | ol = 10    | -10                                                    |                      |                                                            |
|            | (1)                     | 11                                                                  |                                               | (2)                           | 12                                |         | (3)        | 3                                                      | (4)                  | 2                                                          |
|            | (K<br>(1)               | pared, the<br>= 39, S =<br>$8 \times 10^{-6}$<br>$5 \times 10^{-6}$ | 32, O<br><sup>5</sup> M                       |                               | the solu                          | ition w |            | spect to the so $2	imes 10^{-5}~{ m M}$<br>None of the |                      |                                                            |
| 87.        | The form weight (Mg (1) | weight o                                                            | of the<br>ng the<br>ecryst<br>= 1, O<br>2·3 g | gas evo<br>proces<br>alline p | olved is<br>es is allo<br>product | wed t   | o crys     | g. By taking tallize, filtere g. 0·1 g, 6 g            | all requ<br>d, washe | ed sulphuric acid.<br>uired care the salted and dried. The |
|            | _                       |                                                                     |                                               |                               |                                   |         |            |                                                        |                      |                                                            |
| 88.        | 0.1                     | M NaOH                                                              | I. The                                        | pH of                         | the solu                          | ition o | n addi     |                                                        | cm <sup>3</sup> of ( | s treated against<br>0·1 M NaOH, and<br>                   |
|            | (1)                     | <b>4</b> ·564, 5                                                    | 5-920                                         |                               |                                   |         | <b>(2)</b> | 3.564, 3.920                                           | )                    |                                                            |
|            | (3)                     | 4.564, 4                                                            | l·920<br>-                                    |                               |                                   |         | (4)        | None of the                                            | se                   |                                                            |
| कच्च्य     | कामार                   | प्ताठी जागा                                                         | / SPAC                                        | E FOR                         | ROUGH                             | WORK    | ζ          |                                                        |                      | P.T.O.                                                     |

| <b>89.</b>  | With reference to co-precipitation, select the correct statement from the following: |                                     |              |                                          |  |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------|-------------------------------------|--------------|------------------------------------------|--|--|--|--|--|--|--|
|             | a.                                                                                   | Surface adsorption and mixed crys   | stal form    | ation are equilibrium processes.         |  |  |  |  |  |  |  |
|             |                                                                                      | <del>-</del>                        |              | e from the kinetics of crystal growth.   |  |  |  |  |  |  |  |
|             |                                                                                      |                                     | •            | nd substance whose solubility product    |  |  |  |  |  |  |  |
|             |                                                                                      | has been exceeded causes co-preci   | _            |                                          |  |  |  |  |  |  |  |
|             |                                                                                      | It affects purity which can be easi | =            |                                          |  |  |  |  |  |  |  |
|             | (1)                                                                                  | a only                              | (2)          | b only                                   |  |  |  |  |  |  |  |
| _           | (3)<br>                                                                              | a and b only                        | (4)          | a, b, c and d                            |  |  |  |  |  |  |  |
| 90.         | Sele                                                                                 | ect the correct statement from the  | following    |                                          |  |  |  |  |  |  |  |
|             | a.                                                                                   | When relative supersaturation is    | s large, tl  | he precipitate tends to be colloidal.    |  |  |  |  |  |  |  |
|             | b.                                                                                   | When relative supersaturation is    | s large, a   | crystalline solid is formed.             |  |  |  |  |  |  |  |
|             | c.                                                                                   | If nucleation predominates, a lar   | rge numb     | er of fine particles are produced.       |  |  |  |  |  |  |  |
|             | <b>(1</b> )                                                                          | a only                              | <b>(2)</b>   | b only                                   |  |  |  |  |  |  |  |
|             | (3)                                                                                  | a and c only                        | (4)          | b and c only                             |  |  |  |  |  |  |  |
| <br>91.     | Cal                                                                                  | magite is a/an                      |              |                                          |  |  |  |  |  |  |  |
|             | a.                                                                                   | ore of calcium                      | b.           | precipitating agent for calcium          |  |  |  |  |  |  |  |
|             | c.                                                                                   | protolytic indicator                | d.           | metallochromic indicator                 |  |  |  |  |  |  |  |
|             | (1)                                                                                  | a only (2) b and c only             | y (3)        | c only (4) d only                        |  |  |  |  |  |  |  |
| 92.         | For                                                                                  | dissolution and digestion of inorg  | anic spec    | cies of biological samples, which of the |  |  |  |  |  |  |  |
|             |                                                                                      | owing technique(s) is employed?     | ,carit epo   | and or winder or the                     |  |  |  |  |  |  |  |
|             | <b>a</b> .                                                                           | Microwave assisted digestion        | b.           | High pressure digestion                  |  |  |  |  |  |  |  |
|             | с.                                                                                   | Dry and wet ashing                  | <b>d</b> .   | Use of ion-pair forming agent            |  |  |  |  |  |  |  |
|             | (1)                                                                                  | a only                              | (2)          | a and b only                             |  |  |  |  |  |  |  |
|             | (3)                                                                                  | a, b and c only                     | (4)          | a, b and d only                          |  |  |  |  |  |  |  |
| <br>93.     | Sele                                                                                 | ect the correct statement from the  | following    |                                          |  |  |  |  |  |  |  |
| · · · · · · |                                                                                      | the gross sample                    | 10110 11116  | •                                        |  |  |  |  |  |  |  |
|             | a.                                                                                   | Mass 'm' is proportional to the n   | umber of     | nartislas                                |  |  |  |  |  |  |  |
|             | b.                                                                                   | Degree of heterogeneity is not in   |              | _                                        |  |  |  |  |  |  |  |
|             | c.                                                                                   | 5 ,                                 |              | equal to mass if percentage relative     |  |  |  |  |  |  |  |
|             | U.                                                                                   | standard deviation is 1%.           | L Kg IS      | equil to mass if percentage relative     |  |  |  |  |  |  |  |
|             | d.                                                                                   |                                     | d in areas   | s sample ranges from few particles to    |  |  |  |  |  |  |  |
|             | u.                                                                                   | 10 <sup>12</sup> particles.         | a m Rios     | s sumple tanges from lew particles w     |  |  |  |  |  |  |  |
|             | (1)                                                                                  | a and b only                        | (2)          | a, b and c only                          |  |  |  |  |  |  |  |
|             |                                                                                      | a, c and d only                     | (4)          | b and d only                             |  |  |  |  |  |  |  |
|             | <u>(3)</u>                                                                           | _ <del></del>                       |              |                                          |  |  |  |  |  |  |  |
| A11         | <b>75</b> 10 12                                                                      | मानी ज्याग । CDACE EOD DOUGH WOE    | 3 <b>1</b> / |                                          |  |  |  |  |  |  |  |

| 94.   | when treated with $0.05 \text{ N H}_2\text{SO}_4$ , exactly at $40 \text{ cm}^3$ , the effervescence ceased. The percent purity of the sample is |                        |                                    |                    |                                                                      |                      |                        |                      |                      |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------|--------------------|----------------------------------------------------------------------|----------------------|------------------------|----------------------|----------------------|--|--|--|--|
|       | (1)                                                                                                                                              |                        | (2)                                | 94·76              |                                                                      | 90.00                | (4)                    | 99.00                |                      |  |  |  |  |
| 95.   |                                                                                                                                                  |                        |                                    |                    | is treated ved at NTP is                                             |                      |                        | 5 N H <sub>2</sub> S | O <sub>4</sub> , the |  |  |  |  |
|       | (1)                                                                                                                                              | 112                    | (2)                                | 56                 | (3)                                                                  | 67.2                 | (4)                    | None of t            | these                |  |  |  |  |
| 96.   |                                                                                                                                                  | the conve              | ersion of Al                       | 3+ to alu          | minium hyd                                                           | roxide pred          | cipitate, th           | e preferre           | d set of             |  |  |  |  |
|       | (1)                                                                                                                                              | NaOH o                 | only                               |                    | (2)                                                                  | $NH_3 + H$           | <sub>2</sub> O only    |                      |                      |  |  |  |  |
|       | (3)                                                                                                                                              | NH <sub>4</sub> Cl -   | + NH <sub>3</sub> + H <sub>2</sub> | O only             | (4)                                                                  | All of the           | ese                    |                      |                      |  |  |  |  |
| 97.   | In o                                                                                                                                             | _                      | e analysis,                        | the ion/s          | that could b                                                         | e precipita          | ted in mor             | e than one           | e group              |  |  |  |  |
|       | (1)                                                                                                                                              | Pb <sup>2+</sup> on    | ly                                 |                    | (2)                                                                  | Mn <sup>2+</sup> onl | у                      |                      |                      |  |  |  |  |
|       | (3)                                                                                                                                              | Both Pb                | o <sup>2+</sup> as well a          | s Mn <sup>2+</sup> | (4)                                                                  | Neither I            | Pb <sup>2+</sup> nor M | n <sup>2+</sup>      |                      |  |  |  |  |
| 98.   |                                                                                                                                                  |                        |                                    |                    | ith 400 cm <sup>3</sup> che pH of the                                |                      |                        |                      |                      |  |  |  |  |
|       | (1)                                                                                                                                              | 0.4                    | (2)                                | 0.6                | (3)                                                                  | 0.8                  | (4)                    | None of t            | these                |  |  |  |  |
| 99.   | 50 o<br>pH                                                                                                                                       | cm <sup>3</sup> of 0·0 | 03 M Ni <sup>2+</sup>              | with 50            | li <sup>2+</sup> ion in s<br>cm <sup>3</sup> of 0·05<br>of the react | M EDTA.              | The mixtu              | re is buff           | ered at              |  |  |  |  |
|       | (1)                                                                                                                                              | 1·4 × 10               | <del>-</del> 8                     |                    | (2)                                                                  | $1.4 \times 10^8$    |                        |                      |                      |  |  |  |  |
|       | (3)                                                                                                                                              | $0.02 \times 10^{-1}$  | 0 <sup>-8</sup>                    |                    | (4)                                                                  | None of t            | hese                   |                      |                      |  |  |  |  |
| 100.  |                                                                                                                                                  |                        | pH of the<br>H = 3 ? [Ter          |                    | obtained by<br>e 298 K]                                              | mixing ed            | qual volum             | es of solu           | ition of             |  |  |  |  |
|       | (1)                                                                                                                                              | 0.71                   |                                    |                    | (2)                                                                  | 2                    |                        |                      |                      |  |  |  |  |
|       | (3)                                                                                                                                              | 1.296                  |                                    |                    | (4)                                                                  | None of t            | hese                   | <b>:</b>             |                      |  |  |  |  |
| कच्चा | कामार                                                                                                                                            | नाठी जागा <i>।</i>     | SPACE FOR                          | ROUGH              | WORK                                                                 |                      |                        |                      | P.T.O.               |  |  |  |  |

#### LOGARITHMS

|    |      | T            |      |      |      | l    |              | <u> </u>          |      |      |     |     | M  | lean ]     | Diffe | rence | <u></u> |     |             |
|----|------|--------------|------|------|------|------|--------------|-------------------|------|------|-----|-----|----|------------|-------|-------|---------|-----|-------------|
|    | 0    | 1            | 2    | 3    | 4    | 5    | 6            | 7                 | 8    | 9    | 1   | 2   | 3  | 4          | 5     | 6     | 7       | 8   | 9           |
| 10 | 0000 | 0043         | 0086 | 0128 | 0170 | 0212 | 0253         | 0294              | 0334 | 0374 | 4   | 8   | 12 | 17         | 21    | 25    | 29      | 33  | 37          |
| 11 | 0414 | 0453         | 0492 | 0531 | 0569 | 0607 | 0645         | 0682              | 0719 | 0755 | 4   | 8   | 11 | 15         | 19    | 23    | 26      | 30  |             |
| 12 | 0792 | 0828         | 0864 | 0899 | 0934 | 0969 | 1004         | 1038              | 1072 | 1106 | 3   | 7   | 10 | 14         | 17    | 21    | 24      | 28  | 31          |
| 13 | 1139 | 1173         | 1206 | 1239 | 1271 | 1303 | 1335         | 1367              | 1399 | 1430 | 3   | 6   | 10 | 13         | 16    | 19    | 23      | 26  | 29          |
| 14 | 1461 | 1492         | 1523 | 1553 | 1584 | 1614 | 1644         | 1673              | 1703 | 1732 | 3   | 6   | 9  | 12         | 15    | 18    | 21      | 24  | 27          |
| 15 | 1761 | 1790         | 1818 | 1847 | 1875 | 1903 | 1931         | 1959              | 1987 | 2014 | 3   | 6   | 8  | 11         | 14    | 17    | 20      | 22  | 25          |
| 16 | 2041 | 2068         | 2095 | 2122 | 2148 | 2175 | 2201         | 2227              | 2253 | 2279 | - 3 | 5   | 8  | 11         | 13    | 16    | 18      | 21  | 24          |
| 17 | 2304 | 2330         | 2355 | 2380 | 2405 | 2430 | 2455         | 2480              | 2504 | 2529 | 2   | 5   | 7  | 10         | 12    | 15    | 17      | 20  | 22          |
| 18 | 2553 | 2577         | 2601 | 2625 | 2648 | 2672 | 2695         | 2718              | 2742 | 2765 | 2   | 5   | 7  | 9          | 12    | 14    | 16      | 19  | 21          |
| 19 | 2788 | 2810         | 2833 | 2856 | 2878 | 2900 | 2923         | 2945              | 2967 | 2989 | 2   | 4   | 7  | 9          | 11    | 13    | 16      | 18  | 20          |
| 20 | 3010 | 3032         | 3054 | 3075 | 3096 | 3118 | 3139         | 31 <del>6</del> 0 | 3181 | 3201 | 2   | 4   | 6  | 8          | 11    | 13    | 15      | 17  | 19          |
| 21 | 3222 | 3243         | 3263 | 3284 | 3304 | 3324 | 3345         | 3365              | 3385 | 3404 | 2   | 4   | 6  | 8          | 10    | 12    | 14      | 16  | 18          |
| 22 | 3424 | 3444         | 3464 | 3483 | 3502 | 3522 | 3541         | 3560              | 3579 | 3598 | 2   | 4   | 6  | 8          | 10    | 12    | 14      | 15  | 17          |
| 23 | 3617 | 3636         | 3655 | 3674 | 3692 | 3711 | 3729         | 3747              | 3766 | 3784 | 2.  | 4   | 6  | 7          | 9     | 11    | · 13    | 15  | <b>17</b> . |
| 24 | 3802 | 3820         | 3838 | 3856 | 3874 | 3892 | 3909         | 3927              | 3945 | 3962 | 2   | 4   | 5  | ^ <b>7</b> | 9     | 11    | 12      | 14  | 16          |
| 25 | 3979 | 3997         | 4014 | 4031 | 4048 | 4065 | 4082         | 4099              | 4116 | 4133 | 2   | 3   | 5  | 7          | 9     | 10    | 12      | 14  | 15          |
| 26 | 4150 | 4166         | 4183 | 4200 | 4216 | 4232 | 4249         | 4265              | 4281 | 4298 | 2   | 3   | 5  | . 7        | 8     | 10    | 11      | 13  | 15          |
| 27 | 4314 | 4330         | 4346 | 4362 | 4378 | 4393 | 4409         | 4425              | 4440 | 4456 | 2   | . 3 | 5  | 6          | 8     | 9     | 11      | 13  | 14          |
| 28 | 4472 | 4487         | 4502 | 4518 | 4533 | 4548 | 4564         | 4579              | 4594 | 4609 | 2   | 3   | 5  | 6          | 8     | 9     | 11      | .12 | 14          |
| 29 | 4624 | 4639         | 4654 | 4669 | 4683 | 4698 | 4713         | 4728              | 4742 | 4757 | 1   | 3   | 4  | 6          | 7     | 9     | 10      | 12  | 13          |
| 30 | 4771 | 4786         | 4800 | 4814 | 4829 | 4843 | 4857         | 4871              | 4886 | 4900 | 1   | 3   | 4  | 6          | 7     | 9     | 10      | 11  | 13          |
| 31 | 4914 | 4928         | 4942 | 4955 | 4969 | 4983 | 4997         | 5011              | 5024 | 5038 | 1   | 3   | 4  | 6          | 7     | 8 -   | 10      | 11  | 12          |
| 32 | 5051 | 5065         | 5079 | 5092 | 5105 | 5119 | 5132         | 5145              | 5159 | 5172 | 1   | 3   | 4  | 5          | 7     | 8     | 9.      | 11  | 12          |
| 33 | 5185 | 5198         | 5211 | 5224 | 5237 | 5250 | 5263         | 5276              | 5289 | 5302 | 1   | 3   | 4  | 5          | 6     | 8     | 9       | 10  | 12          |
| 34 | 5315 | 5328         | 5340 | 5353 | 5366 | 5378 | 5391         | 5403              | 5416 | 5428 | 1   | 3   | 4  | 5          | 6     | 8     | 9       | 10  | 11          |
| 35 | 5441 | 5453         | 5465 | 5478 | 5490 | 5502 | 5514         | 5527              | 5539 | 5551 | 1   | 2   | 4  | 5          | 6     | 7     | 9       | 10  | 11          |
| 36 | 5563 | 5575         | 5587 | 5599 | 5611 | 5623 | 5635         | 5647              | 5658 | 5670 | 1   | 2   | 4  | 5          | 6     | 7     | 8       | 10  | 11          |
| 37 | 5682 | 5694         | 5705 | 5717 | 5729 | 5740 | 5752         | <b>576</b> 3      | 5775 | 5786 | 1   | 2   | 3  | 5          | · 6   | 7     | 8       | 9   | 10          |
| 38 | 5798 | 5809         | 5821 | 5832 | 5843 | 5855 | 5866         | 5877              | 5888 | 5899 | 1   | 2   | 3  | 5          | 6     | 7     | 8       | 9   | 10          |
| 39 | 5911 | 5922         | 5933 | 5944 | 5955 | 5966 | <b>597</b> 7 | 5988              | 5999 | 6010 | 1   | 2   | 3  | 4          | 5     | 7     | 8       | 9   | 10          |
| 40 | 6021 | 6031         | 6042 | 6053 | 6064 | 6075 | 6085         | 6096              | 6107 | 6117 | 1   | 2   | 3  | 4.         | 5     | 6     | 8       | 9   | 10          |
| 41 | 6128 | 6138         | 6149 | 6160 | 6170 | 6180 | <b>6</b> 191 | 6201              | 6212 | 6222 | 1   | 2   | 3  | 4          | 5     | 6     | 7       | 8   | 9           |
| 42 | 6232 | 6243         | 6253 | 6263 | 6274 | 6284 | 6294         | 6304              | 6314 | 6325 | 1   | 2   | 3  | 4          | 5     | 6     | 7       | 8   | 9           |
| 43 | 6335 | 6345         | 6355 | 6365 | 6375 | 6385 | 6395         | 6405              | 6415 | 6425 | 1   | 2   | 3  | 4          | 5     | 6     | 7       | 8   | 9           |
| 44 | 6435 | 6444         | 6454 | 6464 | 6474 | 6484 | 6493         | 6503              | 6513 | 6522 | 1   | 2   | 3  | 4          | 5     | 6     | 7       | 8   | 9           |
| 45 | 6532 | 6542         | 6551 | 6561 | 6571 | 6580 | 6590         | 6599              | 6609 | 6618 | 1   | 2   | 3  | 4          | 5     | 6     | 7       | 8   | 9           |
| 46 | 6628 | 6637         | 6646 | 6656 | 6665 | 6675 | 6684         | 6693              | 6702 | 6712 | 1   | 2   | 3  | 4          | 5     | 6     | 7       | 7   | 8           |
| 47 | 6721 | 6730         | 6739 | 6749 | 6758 | 6767 | 677 <b>6</b> | 6785              | 6794 | 6803 | 1   | 2   | 3  | 4          | 5     | 5     | 6       | 7   | 8           |
| 48 | 6812 | 6821         | 6830 | 6839 | 6848 | 6857 | 6866         | 6875              | 6884 | 6893 | 1   | 2   | 3  | 4          | 4     | 5     | 6       | 7   | 8           |
| 49 | 6902 | <b>69</b> 11 | 6920 | 6928 | 6937 | 6946 | 6955         | 6964              | 6972 | 6981 | 1   | 2   | 3  | - 4        | 4     | 5     | 6       | 7   | 8           |
| 50 | 6990 | 6998         | 7007 | 7016 | 7024 | 7033 | 7042         | 7050              | 7059 | 7067 | 1   | 2   | 3  | 3          | 4     | 5     | 6       | _7  | 8           |

#### LOGARITHMS

| Γ        |              |                  |              |                |              |                |              | T                    |              |              | M | [ean   | Diff     | erence | <br>:s   |        |     |        |        |
|----------|--------------|------------------|--------------|----------------|--------------|----------------|--------------|----------------------|--------------|--------------|---|--------|----------|--------|----------|--------|-----|--------|--------|
|          | 0            | 1                | 2            | 3              | 4            | 5              | 6            | 7                    | 8            | 9            | 1 | 2      | 3        | 4      | 5        | 6      | 7   | 8      | 9      |
| 51       | 7076         | 7084             | 7093         | 7101           | 7110         | 7118           | 7126         | 7135                 | 7143         | 7152         | 1 | 2      | 3        | 3      | 4        | 5      | 6   | 7      | 8      |
| 52       | 7160         | 7168             | 7177         | 7185           | 7193         | 7202           | 7210         | 7218                 | 7226         | 7235         | 1 | 2      | 2        | 3      | 4        | 5      | 6   | 7      | 7      |
| 53       | 7243         | 7251             | 7259         | 7267           | 7275         | 7284           | 7292         | 7300                 | 7308         | 7316         | 1 | 2      | 2        | 3      | 4        | 5      | 6   | 6      | 7      |
| 54       | 7324         | 7332             | 7340         | 7348           | 7356         | 7364           | 7372         | 7380                 | 7388         | 7396         | 1 | 2      | 2        | 3      | 4        | 5      | 6   | 6      | 7      |
| 55       | 7404         | 7412             | 7419         | 7427           | 7435         | 7443           | 7451         | 7459                 | 7466         | 7474         | 1 | . 2    | 2        | 3      | 4        | 5      | 5   | 6      | 7      |
| 56       | 7482         | 7490             | 7497         | 7505           | 7513         | 7520           | 7528         | 7536                 | 7543         | 7551         | 1 | 2      | 2        | 3      | 4        | 5      | 5   | 6      | 7      |
| 57       | 7559         | 7566             | 7574         | 7582           | 7589         | 7597           | 7604         | 7612                 | 7619         | 7627         | 1 | 2      | 2        | 3      | 4        | 5      | 5   | 6      | 7      |
| 58       | 7634         | 7642             | 7649         | 7657           | 7664         | 7672           | 7679         | 7686                 | 7694         | 7701         | 1 | 1      | 2        | 3      | 4        | 4      | 5   | 6      | 7      |
| 59       | 7709         | 7716             | 7723         | 7731           | 7738         | 7745           | 7752         | 7760                 | 7767         | 7774         | 1 | 1      | 2        | 3      | 4        | 4      | 5   | 6      | 7      |
| 60       | 7782         | 778 <del>9</del> | 7796         | 7803           | 7810         | 7818           | 7825         | 7832                 | 7839         | 7846         | 1 | 1      | 2        | 3      | 4        | 4      | 5   | 6      | 6      |
| 61       | 7853         | 7860             | 7868         | 7875           | 7882         | 7889           | 7896         | 7903                 | 7910         | 7917         | 1 | 1      | 2        | 3      | 4        | 4      | 5   | 6      | 6      |
| 62       | 7924         | 7931             | 7938         | 7945           | 7952         | 7959           | 7966         | 7973                 | 7980         | 7987         | 1 | 1      | 2        | 3      | 3        | 4      | 5   | 6      | 6      |
| 63       | 7993         | 8000             | 8007         | 8014           | 8021         | 8028           | 8035         | 8041                 | 8048         | 8055         | 1 | 1      | 2        | 3      | - 3      | 4      | 5   | 5      | 6      |
| 64       | 8062         | 8069             | 8075         | 8082           | 8089         | 8096           | 8102         | 8109                 | 8116         | 8122         | I | 1      | 2        | 3      | 3        | 4      | 5   | 5      | 6      |
| 65       | 8129         | 8136             | 8142         | 8149           | 8156         | 8162           | 8169         | 8176                 | 8182         | 8189         | 1 | 1      | 2        | 3      | 3        | 4      | 5   | 5      | 6      |
| 66       | 8195         | 8202             | 8209         | 8215           | 8222         | 8228           | 8235         | 8241                 | 8248         | 8254         | 1 | 1      | 2        | 3      | 3        | 4      | 5   | 5      | ć      |
| 67       | 8261         | 8267             | 8274         | 8280           | 8287         | 8293           | 8299         | 8306                 | 8312         | 8319         | 1 | 1      | 2        | 3      | 3        | 4      | 5   | 5      | 6      |
| 68       | 8325         | 8331             | 8338         | 8344           | 8351         | 8357           | 8363         | 8370                 | 8376         | 8382         | 1 | 1      | 2        | 3      | 3        | 4      | 4   | 5      | 6      |
| 69       | 8388         | 8395             | 8401         | 8407           | 8414         | 8420           | 8426         | 8432                 | 8439         | 8445         | 1 | 1      | . 2      | 2      | 3        | 4      | 4   | 5      | 6      |
| 70       | 8451         | 8457             | 8463         | 8470           | 8476         | 8482           | 8488         | 8494                 | 8500         | 8506         | 1 | 1      | 2        | 2      | 3        | 4      | 4   | 5      | 6      |
| 71       | 8513         | 8519             | 8525         | 8531           | 8537         | 8543           | 8549         | 8555                 | 8561         | 8567         | 1 | 1      | 2        | 2      | 3        | 4      | 4   | 5      | 5      |
| 72       | 8573         | 8579             | 8585         | 8591           | 8597         | 8603           | 8609         | 8615                 | 8621         | 8627         | 1 | 1      | 2        | 2      | 3        | 4      | 4   | 5      | 5      |
| 73       | 8633         | 8639             | 8645         | 8651           | 8657         | 8663           | 8669         | 8675                 | 8681         | 8686         | 1 | 1      | 2        | 2      | 3        | 4      | 4   | 5      | 5      |
| 74       | 8692         | 8698             | 8704         | 8710           | 8716         | 8722           | 8727         | 8733                 | 8739         | 8745         | 1 | 1      | 2        | 2      | 3        | 4      | 4   | 5<br>5 | 5<br>5 |
| 75       | 8751         | 8756             | 8762         | 8768           | 8774         | 8779           | 8785         | 8791                 | 8797         | 8802         | 1 | 1      | 2        | 2      | _        | 3      | 4   |        |        |
| 76       | 8808         | 8814             | 8820         | 8825           | 8831         | 8837           | 8842         | 8848                 | 8854         | 8859         | 1 | , 1    | 2        | 2      | 3        | 3      | 4   | 5      | 5      |
| 77       | 8865         | 8871             | 8876         | 8882           | 8887         | 8893           | 8899         | 8904                 | 8910         | 8915         | 1 | 1      | 2        | 2      | 3        | 3      | 4   | 4      | 5      |
| 78       | 8921         | 8927             | 8932         | 8938           | 8943         | 8949           | 8954         | 8960                 | 8965         | 8971         | 1 | 1      | 2        | 2      | 3        | 3      | 4   | 4      | 5      |
| 79       | 8976         | 8982             | 8987         | 8993           | 8998         | 9004           | 9009         | 9015                 | 9020         | 9025         | 1 | 1      | 2        | 2      | 3        | 3      | 4   | 4      | · 5    |
| 80       | 9031         | 9036             | 9042         | 9047           | 9053         | 9058           | 9063         | 9069                 | 9074         | 9079         | 1 | 1      | 2        | 2      | 3        | 3      | 4   |        |        |
| 81       | 9085         | 9090             | 9096         | 9101           | 9106         | 9112           | 9117         | 9122                 | 9128         | 9133         | 1 | 1      | 2        | 2      | 3        | 3      | 4   | 4      | 5      |
| 82       | 9138         | 9143             | 9149         | 9154           | 9159         | 9165           | 9170         | 9175                 | 9180         | 9186         | 1 | 1      | 2        | 2      | 3        | 3      | ] 4 | 4      | 5      |
| 83       | 9191         | 9196             | 9201         | 9206           | 9217         | 9217           | 9222         | 9227                 | 9232         | 9238         | 1 | 1      | 2        | 2      | 3        | 3      | 4   | 4      | 5      |
| 84       | 9243         | 9248             | 9253         | 9258           | 9263         | 9269           | 9274<br>9325 | 9279<br>9330         | 9284         | 9289         | 1 | 1<br>1 | 2 .      | 2      | 3        | 3<br>3 | 4   | 4      | 5<br>5 |
| 85       | 9294         | 9299             | 9304         | 9360           | 9315         | 9320           |              | -                    | 9335         | 9340         | 1 |        |          |        | -        | _      | `   | -      |        |
| 86       | 9345         | 9350             | 9355         | 9360           | 9365         | 9370           | 9375         | 9380                 | 9385         | 9390         | 1 | 1      | 2        | 2      | 3        | 3      | 4   | 4      | 5      |
| 87       | 9395         | 9400             | 9405         | 9410           | 9415         | 9420           | 9425         | 9430                 | 9435         | 9440         | 0 | 1      | 1        | 2      | 2        | 3      | 3   | 4      | 4      |
| 88       | 9445         | 9450             | 9455         | 9460           | 9465         | 9469           | 9474         | 9479                 | 9484         | 9489         | 0 | 1      | Î<br>1   | 2      | 2        | 3      | 3   | 4      | 4      |
| 89<br>90 | 9494<br>9542 | 9499<br>9547     | 9504<br>9552 | 9509<br>9557   | 9513<br>9562 | 9518<br>9566   | 9523<br>9571 | 9528<br>9576         | 9533<br>9581 | 9538<br>9586 | 0 | 1<br>1 | 1        | 2 2    | 2        | 3      | 3   | 4<br>4 | 4      |
|          |              |                  |              |                | -            |                |              |                      |              | l 1          |   |        |          |        |          |        | -   |        | -      |
| 91       | 9590         | 9595             | 9600         | 9605           | 9609         | 9614           | 9619         | 9624                 | 9628         | 9633         | 0 | 1      | 1        | 2      | 2        | 3      | 3   | 4      | 4      |
| 92       | 9638         | 9643             | 9647         | 9652           | 9657         | 9661           | 9666         | 9671                 | 9675         | 9680<br>9727 | 0 | 1      | 1        | 2      | 2        | 3      | 3   | 4<br>4 | 4      |
| 93       | 9685<br>9731 | 9689             | 9694         | 9699           | 9703<br>9750 | 9708 ·<br>9754 | 9713<br>9759 | 9717<br>9763         | 9722         | 9773         | 0 | 1      | 1 ,<br>I | 2      | 2<br>2   | 3      | 3   | 4      | 4      |
| 94<br>95 | 9731         | 9736<br>9782     | 9741<br>9786 | 9745<br>9791   | 9730<br>9795 | 9800           | 9805         | 9809                 | 9768<br>9814 | 9818         | 0 | 1<br>I | 1        | 2      | 2        | 3      | 3   | 4      | 4      |
| 1        | L.           |                  | ſ            | - 1            |              |                | 1            |                      |              |              |   | _      |          |        |          | _      | , - |        | ·      |
| 96       | 9823         |                  | 9832         | 9836           | 9841         | 9845           | 9850         | 9854                 | 9859         | 9863         | 0 | 1      | 1        | 2      | 2        | 3      | 3   | 4      | 4<br>4 |
| 97       |              | 9872             | 9877         | 9881           | 9886         | 9890           | 9894<br>9939 | 98 <b>99</b><br>9943 | 9903         | 9908         | 0 | 1      | 1        | 2<br>2 | 2        | 3      | 3   | 4      | 4      |
| 98       |              |                  | 9921         | 9926  <br>9969 | 9930<br>9974 | 9934<br>9978   | 9983         | 9943<br>9987         | 9948<br>9991 | 9952<br>9996 | 0 | 1<br>1 | 1        | 2      | 2 2      | 3      | 3   | 4      | 4      |
| 99       | 9956         | 7701             | 9965         | 7707           | 77/4         | 7710           | 7703         | 770/                 | 7771         | ###U         |   |        | ,*       |        | <u> </u> | ,      |     |        |        |

#### **ANTILOGARITHMS**

| · ·  |              | T            | _            |              | <u> </u>       |              |              |                |              | _              | Γ   | _      | <del></del> - | M                                      | ean    | Diffe  | rences |        |     |
|------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|----------------|--------------|----------------|-----|--------|---------------|----------------------------------------|--------|--------|--------|--------|-----|
|      | 0            | 1            | 2            | 3            | 4              | 5            | 6            | 7              | 8            | 9              | 1   | 2      | 3             | 4                                      | 5      | 6      | 7_     | 8      | 9   |
| .00  | 1900         | 1002         | 1005         | 1007         | 1009           | 1012         | 1014         | 1016           | 1019         | 1021           | 0   | 0      | 1             | 1.                                     | 1      | 1      | 2      | 2      |     |
| .01  | 1023         | 1026         | 1028         | 1030         | 1033           | 1035         | 1038         | 1040           | 1042         | 1045           | 0   | 0      | 1             | 1                                      | 1      | 1      | 2      | 2      | 2   |
| .02  | 1047         | 1050         | 1052         | 1054         | 1057           | 1059         | 1062         | 1064           | 1067         | 1069           | 0   | 0      | 1             | 1                                      | 1      | 1      | 2      | 2      | 2   |
| .03  | 1072         | 1074         | 1076         | 1079         | 1081           | 1084         | 1086<br>1112 | 1089           | 1091         | 1094           | 0   | 0      | 1<br>1        | 1                                      | 1      | 1      | 2      | 2      | 2   |
| .04  | 1096         | 1099         | 1102         | 1104         | 1107<br>  1132 | 1109<br>1135 | 1112         | 1114<br>1140   | 1117<br>1143 | 1119           | 0   | 1      | 1.            | $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ | 1<br>1 | 2      | 2 2    | 2      | 2   |
| .06  | 1148         | 1151         | 1153         | 1156         | 1159           | 1161         | 1164         | 1167           | 1169         | 1172           | 0   | 1      | 1             |                                        | 1      | 2      | 2      | 2      | 2   |
| .07  | 1175         | 1178         | 1180         | 1183         | 1186           | 1189         | 1191         | 1194           | 1197         | 1199           | ľŏ  | i      | i             | i                                      | ì      | 2      | 2      | 2      | 2   |
| .08  | 1202         | 1205         | 1208         | 1211         | 1213           | 1216         | 1219         | 1222           | 1225         | 1227           | 0   | 1      | 1             | 1                                      | 1      | 2      | 2      | 2      | 3   |
| .09  | 1230         | 1233         | 1236         | 1239         | 1242           | 1245         | 1247         | 1250           | 1253         | 1256           | . 0 | 1      | 1             | 1                                      | 1      | 2      | 2      | 2      | 3   |
| .10  | 1259         | 1262         | 1265         | 1268         | 1271           | 1274         | 1276         | 1279           | 1282         | 1285           | 0   | 1      | 1             | 1                                      | 1      | 2      | 2      | 2      | 3   |
| 11.  | 1288         | 1291<br>1321 | 1294<br>1324 | 1297<br>1327 | 1300<br>1330   | 1303<br>1334 | 1306<br>1337 | 1309<br>1340   | 1312<br>1343 | 1315<br>1346   | 0   | 1      | 1             |                                        | 2      | 2      | 2 2    | 2      | 3   |
| .12  | 1318<br>1349 | 1352         | 1355         | 1358         | 1361           | 1365         | 1368         | 1371           | 1374         | 1377           | ŏ   | 1      | 1             | i                                      | 2      | 2      | 2      | 3      | 3   |
| .14  | 1380         | 1384         | 1387         | 1390         | 1393           | 1396         | 1400         | 1403           | 1406         | 1409           | ō   | 1      | ī             | i                                      | 2      | 2      | 2      | 3      | 3   |
| .15  | 1413         | 1416         | 1419         | 1422         | 1426           | 1429         | 1432         | 1435           | 1439         | 1442           | 0   | 1      | 1             | 1                                      | 2      | 2      | 2      | 3      | 3   |
| .16  | 1445         | 1449         | 1452         | 1455         | 1459           | 1462         | 1466         | 1469           | 1472         | 1476           | 0.  | 1      | 1             | 1                                      | 2      | 2      | 2      | 3      | 3   |
| .17  | 1479         | 1483         | 1486         | 1489         | 1493           | 1496         | 1500         | 1503           | 1507         | 1510           | · 0 | 1      | 1             | - 1                                    | 2      | 2      | 2      | 3      | 3.  |
| 1.18 | 1514         | 1517<br>1552 | 1521<br>1556 | 1524<br>1560 | 1528<br>1563   | 1531<br>1567 | 1535<br>1570 | 1538<br>1574   | 1542<br>1578 | 1545<br>1581   | 0   | 1<br>1 | 1<br>1        | 1                                      | 2      | 2<br>2 | 3      | 3      | 3   |
| .19  | 1549<br>1585 | 1589         | 1592         | 1596         | 1600           | 1603         | 1607         | 1611           | 1614         | 1618           | ŏ   | 1      | 1             | li                                     | 2      | 2      | 3      | 3      | 3   |
| .21  | 1622         | 1626         | 1629         | 1633         | 1637           | 1641         | 1644         | 1648           | 1652         | 1656           | 0   | 1      | 1             | 2                                      | 2      | 2      | 3      | 3      | 3   |
| .22  | 1660         | 1663         | 1667         | 1671         | 1675           | 1679         | 1683         | 1687           | 1690         | 1694           | ŏ   | 1      | î j           | 2                                      | 2      | 2      | 3      | 3      | 3   |
| .23  | 1698         | 1702         | 1706         | 1710         | 1714           | 1718         | 1722         | 1726           | 1730         | 1734           | 0   | 1      | 1             | 2                                      | 2      | 2      | 3      | 3      | 4   |
| .24  | 1738         | 1742         | 1746         | 1750         | 1754           | 1758         | 1762         | 1766           | 1770         | 1774           | 0   | 1      | 1             | 2                                      | 2      | 2      | 3      | 3      | 4   |
| .25  | 1778         | 1782         | 1786         | 1791         | 1795           | 1798         | 1803         | 1807           | 1811         | 1816           | 0   | 1      | 1             | 2                                      | 2      | 2      | 3      | 3      | 4   |
| .26  | 1820<br>1862 | 1824         | 1828<br>1871 | 1832<br>1875 | 1837<br>1879   | 1841<br>1884 | 1845<br>1888 | 1849  <br>1892 | 1854<br>1897 | 1858  <br>1901 | 0   | 1<br>1 | 1 1           | 2                                      | 2      | 3      | 3 3    | . 3    | 4   |
| .27  | 1905         | 1866<br>1910 | 1914         | 1919         | 1923           | 1928         | 1932         | 1936           | 1941         | 1945           | ŏ   | i      | î             | 2                                      | 2      | 3      | 3      | 4      | 4   |
| .29  | 1950         | 1954         | 1959         | 1963         | 1968           | 1972         | 1977         | 1982           | 1986         | 1991           | 0   | 1      | 1             | 2                                      | 2      | 3      | 3      | 4      | 4   |
| .30  | 1995         | 2000         | 2004         | 2009         | 2014           | 2018         | 2023         | 2028           | 2032         | 2037           | 0   | 1      | 1             | 2                                      | · 2    | 3      | 3      | 4      | 4   |
| .31  | 2042         | 2046         | 2051         | 2056         | 2061           | 2065         | 2070         | 2075           | 2080         | 2084           | 0   | 1      | 1             | 2                                      | 2      | 3      | 3      | 4      | 4   |
| .32  | 2089         | 2094         | 2099         | 2104         | 2109           | 2113         | 2118<br>2168 | 2123<br>2173   | 2128<br>2178 | 2133<br>2183   | 0   | 1<br>1 | 1<br>1        | 2                                      | 2 2    | 3      | 3      | 4      | 4 4 |
| .33  | 2138<br>2188 | 2143<br>2193 | 2148<br>2198 | 2153<br>2203 | 2158<br>2208   | 2163<br>2213 | 2218         | 2223           | 2228         | 2234           | .1  | 1      | 2             | 2                                      | 3      | 3      | 4      | 4      | 5   |
| .35  | 2239         | 2244         | 2249         | 2254         | 2259           | 2265         | 2270         | 2275           | 2280         | 2286           | i   | î      | 2             | 2                                      | 3      | 3      | 4      | 4      | 5   |
| .36  | 2291         | 2296         | 2301         | 2307         | 2312           | 2317         | 2323         | 2328           | 2333         | 2339           | 1   | 1      | 2             | 2                                      | 3      | 3      | 4      | 4      | 5   |
| .37  | 2344         | 2350         | 2355         | 2360         | 2366           | 2371         | 2377         | 2382           | 2388         | 2393           | 1   | 1      | 2             | 2                                      | 3      | 3      | 4      | 4      | 5   |
| .38  |              | 2404         | 2410         | 2415         | 2421           | 2427         | 2432         | 2438           | 2443         | 2449           | 1   | 1      | 2             | 2                                      | 3      | 3      | 4      | 4      | 5   |
| .39  | 2455<br>2512 | 2460<br>2518 | 2466<br>2523 | 2472<br>2529 | 2477<br>2535   | 2483<br>2541 | 2489<br>2547 | 2495<br>2553   | 2500<br>2559 | 2506<br>2564   | 1   | 1      | 2<br>2        | 2 2                                    | 3      | 3<br>4 | 4      | 5<br>5 | 5   |
| i l  |              |              | 2582         | 2588         | 2594           | 2600         | 2606         | 2612           | 2618         | 2624           | 1   | 1      | 2             | 2                                      | 3      | 4      | 4      | 5      | 5   |
| .41  | 2570<br>2630 | 2576<br>2636 | 2642         | 2649         | 2655           | 2661         | 2667         | 2673           | 2679         | 2685           | 1   | ì      | 2             | 2                                      | 3      | 4      | 4      | 5      | 6   |
| .43  | 2692         | 2698         | 2704         | 2710         | 2716           | 2723         | 2729         | 2735           | 2742         | 2748           | ì   | 1      | 2             | 3                                      | 3      | 4      | 4      | 5      | 6   |
| .44  | 2754         | <b>276</b> 1 | 2767         | 2773         | 2780           | 2786         | 2793         | 2799           | 2805         | 2812           | 1   | 1      | 2             | 3                                      | 3      | 4      | 4      | 5      | 6   |
| .45  | 2818         | 2825         | 2831         | 2838         | 2844           | 2851         | 2858         | 2864           | 2871         | 2877           | 1   | 1      | 2             | 3                                      | 3      | 4      | 5      | 5      | 6   |
| .46  | 2884         | 2891         | 2897         | 2904         | 2911           | 2917         | 2924         | 2931           | 2938         | 2944           | 1   | 1      | 2             | 3                                      | 3      | 4      | 5      | 5      | 6   |
| .47  | 2951         | 2958         | 2965         | 2972         | 2979.          | 2985         | 2992         | 2999           | 3006         | 3013           | 1   | 1      | 2             | 3                                      | 3<br>4 | 4      | 5      | 5<br>6 | 6   |
| .48  | 3020<br>3090 | 3027<br>3097 | 3034<br>3105 | 3041<br>3112 | 3048<br>3119   | 3055<br>3126 | 3062<br>3133 | 3069<br>3141   | 3076<br>3148 | 3083<br>3155   | 1   | 1      | 2 2           | 3                                      | . 4    | 4      | 5      | 6      | 6   |
| .50  | 3162         | 3170         | 3177         | 3184         | 3192           | 3199         | 3206         | 3214           | 3221         | 3228           | 1   | 1      | 2             | 3                                      | 4      | 4      | 5      | 6      | 7   |

#### **ANTILOGARITHMS**

|     |      |              |      |      | 1    |      |      |      |      |      |     |     | N   | 1ean | Dif | erenc | <del>-</del> | _  |    |
|-----|------|--------------|------|------|------|------|------|------|------|------|-----|-----|-----|------|-----|-------|--------------|----|----|
|     | 0    | 1            | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 1   | 2   | 3   | 4    | 5   | 6     | 7            | 8  | 9  |
| .51 | 3236 | 3243         | 3251 | 3258 | 3266 | 3273 | 3281 | 3289 | 3296 | 3304 | 1   | 2   | 2   | 3    | 4   | 5     | 5            | 6  | 7  |
| .52 | 3311 | 3319         | 3327 | 3334 | 3342 | 3350 | 3357 | 3365 | 3373 | 3381 | 1   | 2   | 2   | 3    | 4   | 5     | 5            | 6  | 7  |
| .53 | 3388 | 3396         | 3404 | 3412 | 3420 | 3428 | 3436 | 3443 | 3451 | 3459 | 1   | 2   | 2   | 3    | 4   | 5     | 6            | 6  | 7  |
| .54 | 3467 | 3475         | 3483 | 3491 | 3499 | 3508 | 3515 | 3524 | 3532 | 3540 | ı   | 2   | 2   | 3    | 4   | 5     | 6            | 6  | 7  |
| .55 | 3548 | 3556         | 3565 | 3573 | 3581 | 3589 | 3597 | 3606 | 3614 | 3622 | ı   | 2   | 2   | 3    | 4   | 5     | 6            | 7  | 7  |
| .56 | 3631 | 3639         | 3648 | 3656 | 3664 | 3673 | 3681 | 3690 | 3698 | 3707 | 1   | . 2 | 3   | 3    | 4   | 5     | 6            | 7  | 8  |
| .57 | 3715 | 3724         | 3733 | 3741 | 3750 | 3758 | 3767 | 3776 | 3784 | 3793 | 1   | 2   | 3   | 3    | 4   | 5     | 6            | 7  | 8  |
| .58 | 3802 | 3811         | 3819 | 3828 | 3837 | 3846 | 3855 | 3864 | 3873 | 3882 | 1   | 2   | 3   | 4    | 4   | 5     | 6            | 7  | 8  |
| .59 | 3890 | 3899         | 3908 | 3917 | 3926 | 3936 | 3945 | 3954 | 3963 | 3972 | 1   | 2   | 3   | 4    | 5   | 5     | 6            | 7  | 8  |
| .60 | 3981 | 3990         | 3999 | 4009 | 4018 | 4027 | 4036 | 4046 | 4055 | 4064 | 1   | 2   | 3   | 4    | 5   | 6     | 6            | 7  | 8  |
| .61 | 4074 | 4083         | 4093 | 4102 | 4111 | 4121 | 4130 | 4140 | 4150 | 4159 | 1   | 2   | 3   | 4    | 5   | 6     | 7            | 8  | 9  |
| .62 | 4169 | 4178         | 4188 | 4198 | 4207 | 4217 | 4227 | 4236 | 4246 | 4256 | 1   | 2   | 3   | 4    | 5   | 6     | 7            | 8  | 9  |
| .63 | 4266 | 4276         | 4285 | 4295 | 4305 | 4315 | 4325 | 4335 | 4345 | 4355 | 1   | 2   | 3   | 4    | 5   | 6     | 7            | 8  | 9  |
| .64 | 4365 | 4375         | 4385 | 4395 | 4406 | 4416 | 4426 | 4436 | 4446 | 4457 | 1   | 2.  | - 3 | 4    | 5   | 6     | 7            | 8  | 9  |
| .65 | 4467 | 4477         | 4487 | 4498 | 4508 | 4519 | 4529 | 4539 | 4550 | 4560 | 1   | 2   | 3   | 4    | 5   | 6     | 7            | 8  | 9  |
| .66 | 4571 | 4581         | 4592 | 4603 | 4613 | 4624 | 4634 | 4645 | 4656 | 4667 | 1   | 2   | 3   | 4    | 5   | 6     | 7            | 9  | 10 |
| .67 | 4677 | 4688         | 4699 | 4710 | 4721 | 4732 | 4742 | 4753 | 4764 | 4775 | 1   | 2   | 3   | 4    | 5   | 7     | 8            | 9  | 10 |
| 68  | 4786 | 4797         | 4808 | 4819 | 4831 | 4842 | 4853 | 4864 | 4875 | 4887 | 1   | 2   | 3   | 4    | 6   | 7     | 8            | 9  | 10 |
| .69 | 4898 | 4909         | 4920 | 4932 | 4943 | 4955 | 4966 | 4977 | 4989 | 5000 | 1   | 2   | 3   | 5    | 6   | 7     | 8            | 9  | 10 |
| .70 | 5012 | 5023         | 5035 | 5047 | 5058 | 5070 | 5082 | 5093 | 5105 | 5117 | 1   | 2   | 4   | 5    | 6   | 7     | 8            | 9  | 11 |
| .71 | 5129 | 5140         | 5152 | 5164 | 5176 | 5188 | 5200 | 5212 | 5224 | 5236 | l ı | 2   | 4   | 5    | 6   | 7     | 8            | 10 | 11 |
| 72  | 5248 | 5260         | 5272 | 5284 | 5297 | 5309 | 5321 | 5333 | 5346 | 5358 | 1   | 2   | 4   | 5    | 6   | 7     | 9            | 10 | 11 |
| .73 | 5370 | 5383         | 5395 | 5408 | 5420 | 5433 | 5445 | 5458 | 5470 | 5483 | 1   | 3   | 4   | 5    | 6   | 8     | 9            | 10 | 11 |
| .74 | 5495 | 5508         | 5521 | 5534 | 5546 | 5559 | 5572 | 5585 | 5598 | 5610 | 1   | 3   | 4   | 5    | 6   | 8     | 9            | 10 | 12 |
| .75 | 5623 | 5636         | 5649 | 5662 | 5675 | 5689 | 5702 | 5715 | 5728 | 5741 | 1   | 3   | 4   | 5    | 7   | 8     | 9            | 10 | 12 |
| .76 | 5754 | 5768         | 5781 | 5794 | 5808 | 5821 | 5834 | 5848 | 5861 | 5875 | 1   | 3   | 4   | 5    | 7   | 8     | 9            | 11 | 12 |
| .77 | 5888 | 5902         | 5916 | 5929 | 5943 | 5957 | 5970 | 5984 | 5998 | 6012 | 1   | 3   | 4   | 5    | 7   | 8 .   | 10           | 11 | 12 |
| .78 | 6026 | 6039         | 6053 | 6067 | 6081 | 6095 | 6109 | 6124 | 6138 | 6152 | 1   | 3   | 4   | 6    | 7   | 8     | 10           | 11 | 13 |
| .79 | 6166 | 6180         | 6194 | 6209 | 6223 | 6237 | 6252 | 6266 | 6281 | 6295 | 1   | 3   | 4   | 6    | 7   | 9     | 10           | 11 | 13 |
| .80 | 6310 | 6324         | 6339 | 6353 | 6368 | 6383 | 6397 | 6412 | 6427 | 6442 | 1   | 3   | 4   | 6    | 7   | 9     | 10           | 12 | 13 |
| .81 | 6457 | 6471         | 6486 | 6501 | 6516 | 6531 | 6546 | 6561 | 6577 | 6592 | 2   | 3   | 5   | 6    | 8   | 9     | 11           | 12 | 14 |
| .82 | 6607 | 6622         | 6637 | 6653 | 6668 | 6683 | 6699 | 6714 | 6730 | 6745 | 2"  | 3   | 5   | 6    | 8   | 9     | 11           | 12 | 14 |
| .83 | 6761 | 6776         | 6792 | 6808 | 6823 | 6839 | 6855 | 6871 | 6887 | 6902 | 2   | 3   | 5   | 6    | 8   | 9     | 11           | 13 | 14 |
| .84 | 6918 | 6934         | 6950 | 6966 | 6982 | 6998 | 7015 | 7031 | 7047 | 7063 | 2   | 3   | 5   | 6    | 8   | 10    | 11           | 13 | 15 |
| .85 | 7079 | 7096         | 7112 | 7129 | 7145 | 7161 | 7178 | 7194 | 7211 | 7228 | 2   | 3   | 5   | 7    | 8   | 10    | 12           | 13 | 15 |
| .86 | 7244 | 7261         | 7278 | 7295 | 7311 | 7328 | 7345 | 7362 | 7379 | 7396 | 2   | 3   | 5   | 7    | 8   | 10    | 12           | 13 | 15 |
| .87 | 7413 | 7430         | 7447 | 7464 | 7482 | 7499 | 7516 | 7534 | 7551 | 7568 | 2   | 3   | 5   | 7    | 9   | 10    | 12           | 14 | 16 |
| .88 | 7586 |              | 7621 | 7638 | 7656 | 7674 | 7691 | 7709 | 7727 | 7745 | 2   | 4   | 5   | 7    |     | 11    | 12           | 14 | -  |
| .89 | 7762 | 7780         | 7798 | 7816 | 7834 | 7852 | 7870 | 7889 | 7907 | 7925 | 2   | 4   | 5   | 7    | 9   |       | 13           | 14 |    |
| .90 | 7943 | <b>796</b> 2 | 7980 | 7998 | 8017 | 8035 | 8054 | 8072 | 8091 | 8110 | 2   | 4   | 6   | 7    | 9   | 11    | 13           | 15 | 17 |
| .91 | 8128 | 8147         | 8166 | 8185 | 8204 | 8222 | 8241 | 8260 | 8279 | 8299 | 2   | 4   | 6   | 8    |     | 11    | 13           | 15 |    |
| .92 | 8318 | 8337         | 8356 | 8375 | 8395 | 8414 | 8433 | 8453 | 8472 | 8492 | 2   | 4   | 6   |      | 10  | 12    | 14           | 15 |    |
|     | 8511 | 8531         | 8551 | 8570 | 8590 | 8616 | 8630 | 8650 | 8670 | 8690 | 2   | 4   | 6   |      | 10  |       | 14           | 16 |    |
|     | 8710 | 8730         | 8750 | 8770 | 8790 | 8810 | 8831 | 8851 | 8872 | 8892 | 2   | 4   | 6   |      | 10  |       | 14           | 16 |    |
| .95 | 8913 | 8933         | 8954 | 8974 | 8995 | 9016 | 9036 | 9057 | 9078 | 9099 | 2   | 4   | 6   | 8    | 10  | 12    | 15           | 17 | 19 |
| .96 | 9120 | 9141         | 9162 | 9183 | 9204 | 9226 | 9247 | 9268 | 9290 | 9311 | 2   | 4   | 6   | 8    | 11  | 13    | 15           | 17 | 19 |
|     | 9333 | 9354         | 9376 | 9397 | 9419 | 9441 | 9462 | 9484 | 9506 | 9528 | 2   | 4   | 7   |      | 11  |       | 15           | 17 |    |
|     | 9550 | 9572         | 9594 | 9616 | 9638 | 9661 | 9683 | 9705 | 9727 | 9750 | 2   | 4   | 7   |      | 11  |       |              | 18 |    |
| .99 | 9772 | 9793         | 9817 | 9840 | 9863 | 9886 | 9908 | 9931 | 9954 | 9977 | 2   | 5   | 7_  | 9    | 11  | 14    | 16.          | 18 | 20 |

# सूचना - (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (एफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/र्किवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

### नमुना प्रश्न

| Pick out the correct word to fill i | in the | blank: |
|-------------------------------------|--------|--------|
|-------------------------------------|--------|--------|

| Q. No. 201. | I congratulate you                  | your grand success.                               |                       |
|-------------|-------------------------------------|---------------------------------------------------|-----------------------|
|             | (1) for                             | (2) at                                            |                       |
|             | (3) on                              | (4) about                                         |                       |
|             |                                     | असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' ह    |                       |
|             | खालीलप्रमाणे प्रश्न क्र. 201 समोरील | उत्तर-क्रमांक ''③'' हे वर्तुळ पूर्णपणे छायांकित व | <b>रु</b> रून दाखविणे |
|             | आवश्यक आहे.                         |                                                   |                       |

я. <del>я</del>. **201.** 1 2 • 4

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तर-क्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. **ह्याकरिता** फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.