PROVISIONAL ANSWER KEY

Post Assistant Professor Physics, Class II, Adv
t No. : 88/2016-17

(AVX)

Premilinary Test on 05-03-2017

Subject Que: 101 to 300 Publish date 14-03-2017

Last Date to send suggestion(s) 21-03-2017

Note - Candidate must ensure the compliance to send all suggestion in the given format with reference to this paper with provisional answer key only

202.	The ground state of G	Chlorine is ${}^{2}P_{3/2}$ then its magnetic moment is	
	(A) $\frac{3}{2} \mu_B$	(B) $\frac{4}{3} \mu_B$	
	(C) μ_B	(D) $\frac{4}{3}\sqrt{15}\mu_B$	

203. The magnetic moment for ¹⁹F nucleus is 2.6273 μ_N and nuclear spin quantum number $I = \frac{1}{2}$, the nuclear g_N -factor

(A) 8.0169 (B) 5.2546 (C) 2.6276 (D) 1.3136

204. The co-ordination number and packing fraction of fcc structure respectively are

(A) 12 and 0.74 (B) 8 and 0.74 (C) 8 and 0.68 (D) 6 and 0.52

205. If the interatomic distance in NaCl crystal is 0.30 nm, the lattice parameter is

(A) 0.15 nm (B) 0.30 nm (C) 0.45 nm (D) 0.65 nm

206. A lattice is characterized by following primitive vectors $\vec{a} = \frac{a}{2} (\hat{j} + \hat{k} - \hat{i})$, $\vec{b} = \frac{a}{2} (\hat{k} + \hat{i} - \hat{j})$, $c = \frac{a}{2} (\hat{i} + \hat{j} - \hat{k})$. The corresponding reciprocal lattice is

(A) bcc with cube edge $\frac{2\pi}{a}$ (B) bcc with cube edge $\frac{1}{a}$ (C) fcc with cube edge $\frac{2\pi}{a}$ (D) fcc with cube edge $\frac{1}{a}$

207. If \vec{k} is wave vector of incident x-ray and \vec{G} is reciprocal lattice vector, the condition of Bragg's reflection is given by

(A) $\vec{k} = \vec{G}$ (B) $\vec{k} = -\vec{G}$ (C) $|\vec{k}| = |\vec{G}|$ (D) $2\vec{k} \cdot \vec{G} = G^2$

208. If p(r) is electron density function, p(r) dV is electron charge, $\varphi(r)$ is the phase difference then the atomic form factor f can be given by

(A) $f = \int e^{i\varphi(r)} p(r) dV$ (B) $f = \int e^{-i\varphi(r)} p(r) dV$ (C) $f = \int e^{i\varphi(r)} \varphi(r) dV$ (D) $f = \int e^{i\varphi(r)} [p(r)]^2 dV$

- For body centered cubic crystals, the geometrical structure factor S is 209.
 - (A) 0 for all values of (h + k + l)
 - (B) 2 for all values of (h + k + l)
 - (C) 0 for all odd values of (h + k + l) and 2 for all even values of (h + k + l)
 - (D) 0 for all even values of (h + k + l) and 2 for all odd values of (h + k + l)
- If total potential energy of interaction between two atoms of a molecule 210. is given by $U(r) = -\frac{A}{r^m} + \frac{B}{r^n}$, and exhibit minima at $r = R_0$, then R_0 is given by
 - (A) $\left(\frac{Bn}{Am}\right)$

(B) $\left(\frac{Bn}{Am}\right)^{\frac{1}{m-n}}$

(C) $\left(\frac{An}{Rm}\right)^{\frac{1}{n-m}}$

- (D) $\left(\frac{Bn}{4m}\right)^{\frac{1}{n-m}}$
- 1 eV per mole is approximately equal to 211.
 - (A) 2.3 k Cal mol⁻¹

(B) 1.6 k Cal mol⁻¹

(C) 23 k Cal mol⁻¹

- (D) 23 Cal mol⁻¹
- In the vibrations of one dimensional monoatomic lattice, if the angular 212. frequency is between zero and maximum value, then the lattice behaves like
 - (A) Superconductor

- (B) Low- pass filter
- (C) High –pass filter
- (D) Perfect diamagnetic material
- According to the Dulong and Petit's law, the heat capacity of a solid 213. consisting of N atoms at high temperatures, is $(k_B \text{ is Boltzmann constant})$
 - (A) $\frac{1}{2}Nk_B$

(B) $\frac{3}{2}Nk_{B}$

(C) Nk_R

- (D) $3Nk_{R}$
- 214. Which of the following represents the Fermi function, where all the symbols assume their usual meanings

 - (A) $f(E) = \frac{1}{\exp\left(\frac{E + E_F}{k_B T}\right) + 1}$ (B) $f(E) = \frac{1}{\exp\left(\frac{E E_F}{k_B T}\right) + 1}$
 - (C) $f(E) = \frac{1}{\exp\left(\frac{E E_F}{k_B T}\right) 1}$ (D) $f(E) = \frac{1}{\exp\left(\frac{E + E_F}{k_B T}\right) 1}$

- **215.** According to Wiedemann-Franz law, at constant temperature, for metals, the ratio of
 - (A) The electrical resistivity to the thermal conductivity should be constant
 - (B) The thermal conductivity to the electrical resistivity should be constant
 - (C) The electrical current to the thermal conductivity should be constant
 - (D) The electrical conductivity to the thermal conductivity should be constant
- **216.** According to free electron theory, the Lorenz number of a metal is (symbols have their usual meaning),
 - (A) $\frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2$

(B) $\frac{\pi^2}{5} \left(\frac{k_B}{e}\right)^3$

(C) $\frac{\pi^2}{5} \left(\frac{k_B}{e}\right)^2$

- (D) $\frac{\pi^5}{3} \left(\frac{k_B}{e}\right)^2$
- 217. The SI unit of Hall coefficient is
 - (A) $V m^2 A^{-1} W b^{-3}$

(B) $V m^3 A^{-1} W b^{-1}$

(C) $V m^3 A^{-1} W b^{-3}$

- (D) V $m^3A^{-2}Wb^{-3}$
- **218.** The critical temperature of superconductor is 3.7 K in absence of applied magnetic field and its critical magnetic field is 0.0306 T (T stands for Tesla) at absolute zero. Its critical magnetic field at 2 K is
 - (A) 1.16×10^{-3} T

(B) 1.16×10^{-2} T

(C) 2.16×10^{-2} T

- (D) 2.16×10^{-3} T
- 219. The magnetic susceptibility of a material in superconducting state is
 - (A) -1

(B) 0

(C) 1

- (D) ∞
- 220. The spins of electron, proton, and neutron respectively are
 - (A) $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$

(B) $\frac{1}{2}$, $\frac{1}{2}$, $\frac{3}{2}$

(C) $\frac{1}{2}$, $\frac{3}{2}$, $\frac{1}{2}$

- (D) $\frac{1}{2}$, $\frac{3}{2}$, $\frac{3}{2}$
- 221. The nuclear radius of ⁴⁰Ca is approximately
 - (A) 6.3 Fermi

(B) 5.2 Fermi

(C) 4.1 Fermi

(D) 3.0 Fermi

222.	_	on term to the total binding energy
	(A) $A^{\frac{1}{2}}$	(B) $A^{\frac{1}{3}}$
	(C) $A^{\frac{2}{3}}$	(D) $A^{\frac{2}{5}}$
223.	MeV, 939.550 MeV and 1875.580 deuteron is approximately equal to	
	(A) 1.875 MeV	(B) 2.875 MeV
	(C) 3.753 MeV	(D) 2.2260 MeV
224.	protons in the nucleus is in order	
	(A) 10^{-28}	(B) 10^{-32}
	(C) 10 ⁻³⁶	(D) 10 ⁻⁴⁰
225.	The nuclear magic numbers are (A) 2, 8, 20, 28, 50, 80 and 126 (B) 2, 8, 20, 28, 50, 82 and 126 (C) 2, 8, 20, 26, 50, 80 and 126 (D) 2, 8, 20, 26, 50, 80 and 126	
226.	There is a parity selection rule for	r α-decay that depends on
220.	(A) Angular momentum	(B) Linear momentum
	(C) Kinetic energy	(D) Position
	(c) riment energy	(-) 1 00.000
227.	The electrostatic force between ear (A) Because it is much smaller the (B) Because the bodies are electric (C) Because they are far away from (D) Because of the tidal effect	an the gravitational force cally neutral
228.	A particle and its antiparticle (A) must have the same mass (B) must be different from each of (C) must have same angular mom (D) can always annihilates into two	entum

229.	. The selection rule for single electric -d	ipole transition are
	(A) $\Delta l = 0, \pm 1; \Delta j = 0, \pm 1$ (B)	$\Delta l = \pm 1; \Delta j = 0, \pm 1$
	(C) $\Delta l = \pm 2 \; ; \Delta j = 0, \pm 1$ (D)	$\Delta l = \pm 1$; $\Delta j = \pm 1$
230.	. What is at the root of quantization of	energy in quantum physics?
	(A) Planck's hypotheis	
	(B) Theory of relativity	
	(C) Bounary condition on wave function	n
	(D) none of above	
231.	. The quantum state of an electron in an a	tom is determined by
	quantum numbers.	,
	(A) One (B)	Two
		Four
	(6) 1	- 0 02-
232.	. The concept of spin of electron was in	troduced to explain the
	(A) Doublet structure of spectral lines of	•
	(B) Doublet structure of spectral lines of	
	(C) Multiplet structure of spectral lines of alkaline earth elements	
	(D) The course structure of spectral lines of the elements in periodic table	
	(2) The course structure of spectrum miles	or the elements in periodic tubic
233.	. Fraunhoffer lines are observed in the sp	pectrum of
	(A) A hydrogen discharge tube	
	(B) A carbon ax	
	(C) The sun	
	(D) Sodium vapour lamp	
	(2) sources ramp	
234.	. A piece of copper and another of geri	manium are cooled from room
	temperature to 40 K. The resistance of	
	(A) Each of them increases	
	(B) Copper increases and germanium de	ecreases
	(C) Copper decreases and germanium in	
	(D) Each of them decreases	icicases
	(D) Lacii of them decreases	
235.	. The equivalent quantity of mass in elec	etricity is
20 0.		Self inductance
		Change
	(C) Totellial (D)	Change

236.	What changes on polarization of l	ight?
	(A) Intensity	(B) Phase
	(C) Frequency	(D) Wave length
237.	Neutrino is a particle which	
	(A) Has no charge but has spin	
	(B) Is charged like electron and h	nas spin
	(C) Has no charge but has mass	nearly that of electron
	(D) Has no charge and no spin	
238.	Which of the following cannot be	polarized?
	(A) Radio waves	(B) X-rays
	(C) Ultra-sonic waves	(D) Ultra-violet rays
239.	The frequency of audio analog sig	gnals lies in the range
	(A) 20Hz to MHz	(B) 20Hz to 20kHz
	(C) 20kHz to 20MHz	(D) 12Hz to 20MHz
240.	Magnetic field outside a solenoid	is
	(A) Zero.	(B) Strong.
	(C) Infinite.	(D) Negligible
241.	In alpha decay (α-decay) proton r	number of parent nuclide
	(A) Increases by 2	(B) Increases by 1
	(C) Decreases by 2	(D) Decreases by 4
242.	Nuclear sizes are expressed in a	unit named
	(A) Fermi	(B) Angstrom
	(C) Newton	(D) Tesla
243.	Which quantity remains same in i	sotones
	(A) Number of protons	(B) Number of neutrons
	(C) Mass number	(D) All of the above
244.	If δQ is the heat transferred to the	ne system and δW is the work done
	by the system, then which of the	following is an exact differential
	(A) δQ	(B) δW
	(C) $\delta Q + \delta W$	(D) $\delta Q - \delta W$

245.		iquid, whose refractive index is equal erial of the lens. Then its focal length
	will	_
	(A) Increase	(B) Become infinite
	(C) Become zero	(D) Decrease
246.	(A) Its resistivity is less	very reliable resistors because
	(B) Its resistivity is more	1
	(C) The temperature coefficient is	•
	(D) Its melting point is very high	l
247.	Current is flowing from a thin wi	ire to a thick wire, so current in thick
	(A) Increase	(B) Decrease
	(C) Remain same	(D) Depends on material
248.	A process in which heavy nucle	us splits into two by bombarding a
	slow moving neutron is called	
	(A) radioactivity	(B) nuclear fusion
	(C) nuclear fission	(D) nuclear spilitting
240	William Call Call Call	. '. FALCEO
249.	$\boldsymbol{\mathcal{E}}$	
	(A) a mixture of an ideal gas als	_
	(B) the enthalpy of an ideal gas (C) the entropy of an ideal gas is	•
		as always decreases during isentropic
	expansion	as arways decreases during isentropie
	Chpanoron	
250.	Addition of trivalent impurity to	a semiconductor creates many
	(A) Holes	(B) Free electrons
	(C) Valence electrons	(D) Bound electrons
251.	The barrier voltage at a pn juncti	on for germanium is about
	(A) 5 V	(B) 3 V
	(C) Zero	(D) 4 V

252.	Lenz's law is related with the law	v of	
	(A) Conservation of charge		
	(B) Conservation of angular mome	entum	
	(C) Conservation of energy		
	(D) Faraday for electromagnetic in	nduction	
253.	In producing Eddy currents, electr	ons move	
	(A) Along crack in metal		
	(B) On any arbitrary paths		
	(C) On the path of high resistance	e	
	(D) On the path of low resistance	,	
254.	What is the unit of inductance		
	(A) Farad	(B) Ampere	
	(C) Henry	(D) Ampere-meter	
255.	A coil of which resistance is called	ed an ideal inductor?	
	(A) High	(B) Moderate	
	(C) Negligible	(D) 4.2Ω	
256.	The self-induction of a straight co	onductor is	
	(A) Zero	(B) Very large	
	(C) Very small	(D) Infinity	
257.	Which type of semiconductor devi	ice does not need any bias voltage?	
	(A) photodiode	(B) Varactor diode	
	(C) Solar cell	(D) Transister	
258.	is used to convert electrica	al energy in to light energy.	
	(A) LED	(B) Solar cell	
	(C) Photo cell	(D) Photo diode	
259.	Transistor is a device with		
	(A) one junction	(B) two junctions	
	(C) three junctions	(D) four junctions	

260.	. When two semiconductors of P and N type are brought in to conta they form a P-N junction which act like	
	(A) Conductor	(B) Oscillator
	(C) Amplifier	(D) Rectifier
261.	In intrinsic semiconductor what is	ratio of free electrons and holes?
	(A) 1 : 1	(B) 1 : 2
	(C) 2 : 1	(D) None of these above
262.	The ratio of energies of electron is excited state is	n the first excited state to its second
	(A) 1 : 4	(B) 4:9
	(C) 9 : 4	(D) 4 : 1
263.	According to classical theory, Rut	herford atom was
	(A) Stable	(B) Unstable
	(C) Semi-stable	(D) Meta-stable
264.	When an electron goes from first	orbit to third orbit it
	(A) Absorbs energy	(B) Emits energy
	(C) Energy doesn't change	(D) None of the above
265.	How many spectral lines are po	ossible for transition of electron in
	hydrogen atom between forth and	first states ?
	(A) 3	(B) 6
	(C) 5	(D) 2
266.	A spherical surface has	
	(A) One principal focus	(A) Two principal foci
	(C) Multiple principal foci	(D) No principal focus
267.	In a diffraction pattern, the width	of any fringe is
	(A) Directly proportional to slit w	ridth
	(B) Inversely proportional to slit	width
	(C) Has no dependence on slit w	idth
	(D) All of the above	

	(C) A biprism	(D) A half wave plate	
269.	What should be the width of a slit at 10 with light of 5000 Ao?	if the first dark line is to be formed	
	(A) 0.25 m	(B) 0.34 cm	
	(C) 0.028 mm	(D) 0.28 mm	
270.	The state of the s	be strongest, in means of polarity?	
	(A) NaCl	(B) NH ₃	
	(C) NH4Cl	(D) H_2CO_3	
271.	In a solenoid the current		
	(A) In all the turns are parallel to	the axis	
	(B) In consecutive turns are oppose		
	(C) In consecutive turns are in the		
	(D) Is I/n where n is the number	of turns per unit length	
272.	Impurities like Boron, Aluminum intrinsic semiconductor to form	, Gallium or Indium are added to	
	(A) N-type doped Semiconductor	(B) P-type doped semiconductor	
	(C) A junction Diode	(D) All of these	
273.	by atomic nuclei, the fact that sort the thin gold foil were back sca conclusions. It was concluded that	•	
	(A) The charge of an electron is	_	
	(B) The nucleus of gold atom carries all its charge (C) Most of the mass of a gold atom is in its nucleus		
		ipies nearly the entire space of the atom	
274.		n the swing. He goes from minimum height of 1.5 meters. His maximum	
	(A) 3 meters per second	(B) 5 meters per second	
	(C) 7 meters per second	(D) 9 meters per second	

[43]

[P.T.O.

268. A device which produces plane polarized light is

(B) A mirror

(A) Nicol prism

AVX-A]

275.	During an INELASTIC collision, (A) Lose kinetic energy (B) Keep the same amount of kine (C) Gains kinetic energy (D) First lose then gain kinetic en	netic energy
276.	The half life of a radioactive eleme	ent which has only 1/32 of its original
	mass left after a lapse of 60 days	
	(A) 12 days	(B) 60 days
	(C) 32 days	(D) 64 days
277.	Alfred Nobel invented	
	(A) X-ray	(B) Diesel engine
	(C) Dynamite	(D) Dynamo
250		
278.		(D) Water
	(A) Steel (C) Air	(B) Water(D) Vacuum
	(C) 1111	(b) vacaum
279.	Energy of photon is given by	
	(A) $E=hf$	(B) E=pc
	(C) $E=mc^2$	(D) all of the above
280.	The films are coloured due to	
200.	(A) Interference of light	(B) Diffraction of light
	(C) Refraction of light	(D) None of these
	(-)	
281.	Longitudinal waves are produced	in
	(A) Solid	(B) Liquids
	(C) Gases	(D) In all three states
282.	Rotational and vibrational motions	are
0,	(A) Quantized	(B) Not-quantized
	(C) May or may not quantized	. /
283.	In gamma emission, change in nu	
	(A) zero	(B) definit
	(C) increase by 1	(D) decrease by 1

284.	34. The spin of atoms and molecules is the sum of the spins ofwhich may be parallel or antiparallel.	
	(A) unpaired electrons	(B) paired electrons
	(C) valence electrons	(D) all electrons
285.	The forces between two charges is charges are doubled, the force wi	s 120 N. If the distance between the ll be
	(A) 60 N	(B) 30 N
	(C) 40 N	(D) 15 N
286.	In alpha decay (α-decay) proton i	number of parent nuclide
	(A) increases by 2	(B) increases by 1
	(C) decreases by 2	(D) decreases by 4
287.	In fission, mass of product is (A) less than the original nucleus (B) more than the original nucleus (C) equal to original nucleus (D) both B and C	
288.	Not a basic step of precipitation	strengthening
	(A) Solutionizing	(B) Mixing and compacting
	(C) Quenching	(D) Aging
289.	In the most general case, which of a second order tensor?	ne of the following quantities is NOT
	(A) Stress	(B) Strain
	(C) Moment of inertia	(D) Pressure
290.	The first law of thermodynamics	is conservation of
	(A) Momentum	(B) Energy
	(C) Both A and B	(D) None of these
291.	When applied to solar radiation, F	Planck's law reduces to Wien's law in
	(A) Ultraviolet region	(B) Microwave region
	(C) Infrared region	(D) Visible region

According to Debye's theory	y of specific heat at high temperature specific
heat is proportional to	
(A) T	(B) T^2
(C) T ³	(D) independent of temperature
charge density ρ is zero is	$V(x, y)$ in free space in a region where the given by $V(x,y) - 4e^{2x}f(x) - 3y^2$. Given that extric field Ex , and V are zero at the origin,
(A) $3x^2 - 4e^{2x} + 8x$	(B) $3x^2 - 4e^{2x} + 16x$
(C) $4e^{2x} - 8$	(D) $3x^2 - 4e^{2x}$
values +1 and -1. The ener + S2S3 + S3 S1] where J	spins S1, S2 and S3 each of which can take rgy of the system is given by E = -J[S1S2 is a positive constant. The minimum energy there of spin configuration are, respectively, (B) -3 and 1J (D) -6 and 2
the acceleration due to Ea	roximately 6400 km. The height h at which arth's gravity differs from g at the Earth's % is
(A) 64 km	(B) 48 km
(C) 32 km	(D) 16 km
The ratio of intensities of temperature is	the D1 and D2 lines of sodium at high
(A) 1:1	(B) 2:3
(C) 1:3	(D) 1:2
(A) The Liquid – Solid Ph	nase transition is first order nase transition is Continuous
	heat is proportional to (A) T (C) T ³ The electrostatic potential is charge density ρ is zero is the x-component of the electron forms for the electron for the electron forms for the electron forms for the electron for the e

A charged particle will move through region getting undeflected if (A) v = B/E. (B) v = BE. (C) v = E/B. (D) y = B + E.

(B) Ultraviolet.

- In photocell cesium, coated oxidized silver cathode emits electrons for
- (C) Infrared light. (D) x-rays.

(A) Visible light.

- **300.** At low temperature, body emits radiations of
- (A) Shorter wavelength. (B) High frequencies.
 - (C) Longer wavelength. (D) Low frequencies.