PROVISIONAL ANSWER KEY

NAME OF THE POST: Assistant Professor Geology, Class II,

Advt No.: 90/2016-17 (AWY)

Date of Preliminary Test: 05-03-2017 Subject: Concerned Subject (101 to 300)

Date of Publication: 14-03-2017

Last Date to send suggestion(s): 21-03-2017

Note:

1). All Suggestions are to be sent with reference to website published Question paper with Provisional Answer Key Only.

- 2). All Suggestions are to be sent in the given format only.
- 3). Candidate must ensure the above compliance.

101. Rock containing normative quartz and hypersthene is designated as

(A) Quartz Tholeiite

(B) Olivine Tholeiite

(C) Alkaline

(D) Subalkaline

102. The only impact Crater formed in basaltic rock is found in		saltic rock is found in
	(A) Indonesia	(B) USA
	(C) Siberia	(D) India
103.		sion in the carbonate rock would lead to
	the formation of	50 22. 11
	(A) Kyanite	(B) Wollastonite
	(C) Pegmatite	(D) Anhydrite
104.	Diamonds are associated with ult	rapotassic-ultramafic rocks known as
	(A) Basanite	(B) Kimberlites
	(C) Foidite	(D) Nephelinite
105.		vergent plate margin is characterized by
	the presence of	
	(A) CFB	(B) OIB
	(C) MORB	(D) IAB
106.	The mineral barkevikite is a soda	·
	(A) Mica	(B) Pyroxene
	(C) Amphibole	(D) Feldspar
107.	Chromite mineralization associated	with the ophiolitic suite of rocks near
	subduction zones are designated as _	
	(A) Stratiform type	(B) Layered type
	(C) Podiform type	(D) Stratabound
108.	The molasse sediments forming an a	apron of gravely debris in the middle of
	Siwalik are referred as	
	(A) Bhabar	(B) Duns
	(C) Tillites	(D) Moraine

109.	î î	mation when traced from the margin to	
	central parts of a basin follows the o		
	(A) Oxide – carbonate – sulphide fa		
	(B) Carbonate – oxide – sulphide fa		
	(C) Silicate – sulphide – carbonate t		
	(D) Oxide – sulphide – silicate facie	es	
110.	A major diamictite horizon which is	described as slump deposit of turbidite	
	origin or glacio-marine deposit that in	ndicates the incidence of Neoproterozoic	
	glaciation in the lesser Himalaya is p	oopularly known as	
	(A) Blaini Boulder Bed	(B) Infrakrol	
	(C) Shali	(D) Buxa Group	
111.	Widmanstatten bands are commonly found in .		
	(A) Chondrites	(B) Iron meteorites	
	(C) Relconditites	(D) Tectites	
112.	Blue schist metamorphism is char	racterized by the presence of mineral	
	———. (A) Glaucophane	(B) Glauconite	
	(C) Grunerite	(D) Wollastonite	
113.	The is called as the Age	e of Mammals.	
	(A) Proterozoic	(B) Mesozoic	
	(C) Paleozoic	(D) Cenozoic	
114.	Which is calcium poor pyroxene fou	and in volcanic rocks	
	(A) Pigeonite	(B) Augite	
	(C) Diopside	(D) Hedenbergite	
115.	Hyalophane isomorphous series is be	etween:	
	(A) K - felspar and Na felspar	(B) K - felspar and Ca felspar	
	(C) K - felspar and Ba felspar	(D) Na - felspar and Ca felspar	

116.	Andalusite and sillimanite crystallise in:				
	(A) Monoclinic syste	em		(B)	Triclinic system
	(C) Orthorhombic sy	ystem	l	(D)	Hexagonal system
117.	Which of the following	ng is a	a trace fos	ssil?	
	(A) mark left by a dir	nosau	r's foot	(B)	mosquito trapped in amber
	(C) mummified plant	t seed	l	(D)	frozen woolly mammoth
118.	Match the following:				
	1. Muscovite.	i	Sodium	mica.	
	2. Paragonite.	ii	Magnesi	um m	ica.
	3. Lepidolite.	iii	Potassiu	m mic	ca.
	4. Phologopite	iv	Lithium	mica.	
	(A) 1-ii, 2-i, 3-iv, 4-i	iii.		(B)	1-iii,2-i, 3-iv, 4-ii.
	(C) 1-i, 2-ii, 3-iii, 4-i	V.		(D)	1-iv, 2-iii, 3-ii, 4-i.
119.	Groundwater subside	nce o	r sagging	is cau	ised due to
	(A) loose soil				
	(B) excessive pumping	ng of	ground w	ater	
	(C) sea water intrusion	on			
	(D) addition of pollu	tants			
120.	Corals are exclusively	y			
	(A) marine and benth	nic		(B)	brackish and benthic
	(C) marine and pelag	gic		(D)	freshwater and nerritic
121.	The three sedimentar	ry roc	k types n	nost fi	requently encountered in oil fields
	are,	_, and	d		
	(A) Shale, Sandstone	e, Car	bonate	(B)	Slate, Phyllite, Argillite
	(C) Argillite, Mudsto	one, S	iltstone	(D)	Siltstone, Argillite, Claystone

122.	Which of the following testing tech	iniques is commonly used to determine
	the hydraulic conductivity of a sha single well?	llow, low-permeability aquifer using a
	(A) Constant head test	(B) Slug test
	(C) Constant discharge test	(D) Surge-response test
123.	A dotted line on a geologic map indi	cates a(an):
	(A) igneous-metamorphic contact	(B) facies change
	(C) concealed contact	(D) unconformable contact
124.	Magnetic field is produced	
	(A) when an electrically charged pa	rticle is in motion
	(B) when atoms vibrate	
	(C) during atomic attractions	
	(D) by addition of electrons in the a	tomic structure
125.	The largest variation in the earth's g	ravity field occurs due to
	(A) equatorial bulge	(B) tidal attraction
	(C) latitudes	(D) centrifugal force
126.	The Andes Mountain range over wes	tern margin of the South American Plate
	represents	
	(A) Block mountains due to rifting	of along Nazca plate
	(B) Folded Mountain chain	
	(C) Island arc volcanism along Peru	-Chile trench
	(D) Collision due to Pacific plate	
127.	The San Andreas Fault separates wh	ich two tectonic plates?
	(A) North America and Juan de Fuca	(B) Nazca and Pacific
	(C) Eurasia and Arabia	(D) North America and Pacific plate
128.	The of a fold is the lin	ne of maximum curvature in a fold.
	(A) axial plane	(B) axial line
	(C) hinge	(D) plunge

[23]

[P.T.O.

AWY-A]

129.	Effect of stress in a rock is reflected	as	
	(A) fracture in both brittle and ductile matters		
	(B) deformation in both brittle and ductile matters		
	(C) fracture in ductile matters and do	eformation in brittle matters	
	(D) fracture in brittle matters and de	formation in ductile matters	
130.	An eye shaped doubly plunging structure can be explained as		
	(A) disharmonic fold	(B) conjugate fold	
	(C) sheath fold	(D) recumbent fold	
131.	A snowball garnet is an example of		
	(A) inter-kinematic mineral growth	(B) syn-kinematic mineral growth	
	(C) post-kinematic mineral growth	(D) pre-kinematic mineral growth	
132.	Both opx and cpx are expected to l facies condition.	be present in metamorphic	
	(A) green-schist	(B) amphibolite	
	(C) zeolite	(D) granulite	
133.	Which is the correct order of different Barrowvian zonal scheme?	at zones from low grade to high grade in	
	(A) Chl-Kya-Grt-Bio	(B) Chl-Grt-Kya-Bio	
	(C) Chl-Bio-Grt-Kya	(D) Kya-Chl-Grt-Bio	
134.	Tillite, turbidites and varves are char- Gondwana Super Group.	acteristic ofFormation from	
	(A) Barakar	(B) Kamthi	
	(C) Talchir	(D) Maleri	
135.	In a structural basin, the youngest str (A) at the center of the basin (B) on the margins of the basin (C) half-way between the center and (D) beneath the older strata.		

136.	Which out of the following minerals	is formed as a result of evaporation in
	the arid regions?	
	(A) Gypsum	(B) Zinc
	(C) Coal	(D) Copper
137.	Salt domes are the best examples of:	
	(A) diapiric fold.	(B) reclined fold.
	(C) drag fold.	(D) pericline fold
138.	Which is orthorhombic Epidote	
	(A) Zoisite	(B) Clinozoisite
	(C) Orthite	(D) Piedmontite
139.	A normal sand-dune is characterized	by:
	(A) steeper windward and gentle lee	ward sides.
	(B) both the sides are gentle.	
	(C) both the sides are steeper.	
	(D) gentle windward and steeper Lee	eward sides.
140.	The NaAlSi ₃ O ₈ - CaAlSi ₃ O ₈ system i	s an example of
	(A) binary solid solution	(B) binary eutectic
	(C) binary peritectic	(D) binary with congruent melting
141.	Which state in India is the largest pro	ducer of manganese ores?
	(A) Jharkhand	(B) Madhya Pradesh
	(C) Maharashtra	(D) Odisha
142.	In Cretaceous of Trichnapalli, the pho	osphate nodules are associated with
	(A) Kallakudi limestone	(B) Karai shales
	(C) Kallamedu sandstone	(D) Paravay sandstone
143.	The difference between the polar to e	quatorial radius is
	(A) 21 km	(B) 42 km
	(C) 63 km	(D) 10 km

144.	Solifluction is a type of mass movement	
	(A) subsidence	(B) slide
	(C) rapid flow	(D) slow flow
145.	Feldspars are best suited geochronol	ogical minerals for
	(A) Rb-Sr dating	(B) Pb-Pb dating
	(C) U-Pb dating	(D) C14 dating
146.	ZTR index is indicator of	<u>_</u> .
	(A) mobility of oxides	(B) immaturity of sediments
	(C) mineral stability	(D) weathering
147.	The circular reefs of which the centrare called:	ral part is occupied by shallow lagoons
	(A) Fringing reefs	(B) Atoll reefs
	(C) Barrier reefs	(D) Circular reefs
148.	Klippe is a	
	(A) Nappe outlier	(B) Nappe inlier
	(C) Window	(D) Hogback
149.	The Bagh beds of Narmada valley ar	nd the Lametas of Jabalpur constitute
	(A) Intertrappeans	(B) Intra-trappeans
	(C) Post-trappeans	(D) Infratrappeans
150.	Following directly after the end of t	he last ice age, the Earth experienced a
	cool period referred to as:	
	(A) The Little Ice Age	(B) The Younger Dryas
	(C) The Pleistocene	(D) The Eocene

151.	Eustatic changes in sea level are the result of			
	(A) Ice sheet activity			
	(B) The amount of water in the oce	ans		
	(C) Adjustments in the Earth's crus	t		
	(D) The thermohaline oceanic circu	llation		
152.	In oceanic oxygen isotope data, high	ner O ¹⁸ indicates		
	(A) Warm temperatures	(B) Cold temperatures		
	(C) Snow enriched in Oxygen 18	(D) Windy conditions		
153.	14-C is used to			
	(A) date samples more than 100,00	0 yrs BP		
	(B) date samples more than 1 Ma y	rs		
	(C) date samples between 1 Ma and 1.5 Ma			
	(D) date samples less than 50,000 y	rrs BP		
154.	Loess is			
	(A) glacially deposited sand	(B) floodplain silts		
	(C) windblown silt deposits	(D) desert sand deposits		
155.	Earth's temperatures are stable because we are surrounded by			
	which allows the right amount of sunlight to warm the Earth.			
	(A) a cloud layer	(B) an atmosphere		
	(C) gravity	(D) water		
156.	The solar radiation that bounces off mostly	the Earth back toward the atmosphere is		
	(A) gamma radiation	(B) x-ray radiation		
	(C) nuclear radiation	(D) infrared radiation		
157.	Contact goniometer is used for the r	measurement of		
	(A) symmetry elements of crystal	(B) axial ratio of a crystal		
	(C) general symbol of a crystal	(D) interfacial angle of a crystal		

158.	Jhiri shale are associated with:	
	(A) Vindhyan	(B) Aravalli
	(C) Cuddapah	(D) Kaladgi
159.	Dinosaur skeletal remains in India ar	e commonly found in
	(A) Bagh beds	(B) Blaini Boulder bed
	(C) Terani plant beds	(D) Baratang Group
160.	When ore minerals are peppered that	roughout the body of the host rock the
	type of deposit is called	
	(A) Stratiform	(B) Stratabound
	(C) Veintype	(D) Disseminated
161.	Radial drainage patterns are normally	y associated with:
	(A) slopes of volcanoes	(B) folded rocks
	(C) faulted rocks	(D) glaciers
162.	Which one of the following feature is	exhibited by a river in its upper course?
	(A) Meanders	(B) River piracy
	(C) Delta	(D) Piedmont plains
163.	The bedded sedimentary rocks that	crystallize from hyper saline solutions
	such as brines or sea water are called	l:
	(A) Phosphorites	(B) Evaporites
	(C) Kerogen	(D) Lignite
164.	The cycle of opening and closing of	the ocean basin is called:
	(A) Convection cycle	(B) Hydrological cycle
	(C) Wilson cycle	(D) Orogenic cycle
165.	The rocks in the overthrust sheets the	at have travelled many kilometers from
	their original plane of deposition are	said to be:
	(A) Autochthonous	(B) Allochthonous
	(C) Nappe	(D) Breakaway

166.	Goethite is a:			
	(A) Hydrous Mn oxide	(B) Hydrous Iron oxide		
	(C) Hydrous Iron carbonate	(D) Hydrous Iron Sulphide		
167.	Neyveli Lignite belongs to:			
	(A) Quaternary	(B) Tertiary		
	(C) Triassic	(D) Jurassic		
168.	In Jurassic of Kutch, the Golden	Oolite are associated with		
	(A) Jumara Formation	(B) Bhuj Formation		
	(C) Jhuran Formation	(D) Jhurio Formation		
169.	The Vail curve indicates	_		
	(A) Global climate chart	(B) Global sea level changes		
	(C) Global plate tectonics	(D) Global ocean currents		
170.	If a fault plane is inclined with an	angle of 35°, then the head will be:		
	(A) 145°	(B) 125°		
	(C) 55°	(D) 45°		
171.	Mineral character of the skeleton of the echinoderms is primarily			
	(A) Chitin	(B) Aragonite		
	(C) Calcite	(D) Montmorillonite		
172.	Di-myrian condition in lamellibra	anchs refers to the presence of		
	(A) 2 adductor impressions	(B) 1 adductor impression		
	(C) 2 adductor impressions	(D) 2 adjacent impressions		
173.	Polyp and medusa are the terms a	associated with		
	(A) Trilobites	(B) Bryozoans		
	(C) Corals	(D) Ammonoids		
174.	Kyanite-staurolite schist represen	ats		
	(A) a mafic protolith	(B) a pelitic protolith		
	(C) a calcic protolith	(D) an arenite protolith		

- 175. Crystalline minerals refer to (A) minerals occurring as well formed crystals (B) minerals showing well developed cleavages (C) minerals having regular internal atomic arrangements (D) minerals not soluble in water 176. In an unconfined aguifer, the storativity is approximately equal to (A) conductivity (B) specific yield (C) intrinsic permeability (D) specific retention 177. Groundwater flow lines can be drawn on (A) water table contour maps (B) depth to water level maps (C) water level fluctuation maps (D) reduced water level maps Metamorphic facies are defined by 178. (A) the conditions of temperature and pressure (B) a single dominant rock type (C) peculiar structures and textures of rock types (D) critical mineral assemblages 179. The epicenter of a deep focus earthquake is located (A) below a depth of 70 km (B) between 70-300km (C) on the earth's surface (D) below 300km **180.** Sea-floor spreading goes through various stages. Which of the sequences below currently places these locations in order so that the initial stage is depicted first followed by more advanced stages of development? (A) Red Sea, Atlantic ocean, African rift valley (B) Red Sea, African rift valley, Atlantic ocean
 - (C) Atlantic ocean, Red Sea, African rift valley
 - (D) African rift valley, Red Sea, Atlantic ocean

181.	Fuel ratio of coal is defined as	
	(A) moisture/volatile matter	
	(B) fixed carbon/ volatile matter	
	(C) organic sulphur/ organic phosp	horous
	(D) pyritic sulphur/ sulphatic sulph	ur
182.	Black shale containing pyrite is indi	cative of
	(A) oxic condition	(B) euxinic condition
	(C) high energy condition	(D) anoxic condition
183.		more and more ductile with increasing arthquakes are likely to have their focus
	(A) deeper level	(B) shallow level
	(C) core-mantle boundary	(D) transition zone
184.	Uvalas are features of	
	(A) karst region	(B) glacial region
	(C) volcanic region	(D) marine region
185.	Glacial snout represents	
	(A) accumulation zone of glacier	(B) terminal end of glacier
	(C) ablation zone of glacier	(D) discharge from the glacier
186.	(A) frictional heating	the mid oceanic ridges is caused by
	(B) decompression	. 1
	(C) high concentration of radioactive(D) influx of water into the mantle	ve elements
187.	The Piper's Trilinear plot is used for (A) hydrochemical facies of water s	•
	(B) metamorphic facies of rock san	*
	(C) discharge and drawdown relation	
	(D) geochemical properties of sedin	·
	(D) geochemical properties of sean	Helito

188.	The most abundant element by weight percent in the Earth's crust is?	
	(A) Silicon	(B) Oxygen
	(C) Carbon	(D) Hydrogen
189.	Which is the only active volcano in l	ndia?
	(A) Narcondam	(B) Koh-i-sultan
	(C) Barren Island Volcano	(D) Popa island
190.	Komatiite are	
	(A) rocks of basaltic composition of	Proterozoic age
	(B) rocks of acidic composition of A	Archean age
	(C) rocks of intermediate composition	on of Proterozoic age
	(D) rocks of ultramafic composition	of Archean age
191.	Porphyritic texture indicates:	
	(A) very slow cooling of magma in	plutonic conditions
	(B) rapid cooling of magma as lava	flows
	(C) intermediate cooling in a dyke	
	(D) metamorphic process	
192.	Which of the following rocks is not a	a product of contact metamorphism?
	(A) Spotted slates	(B) Hornfels
	(C) Skarns	(D) Augen gneiss
193.	The metamorphism involving the co	ombined effect of uniform pressure and
	heat is described as	
	(A) Plutonic metamorphism	(B) Dynamothermal
	(C) Cataclastic metamorphism	(D) Pyroclastic metamorphism
194.	Which one of the following rocks is	completely unfoliated?
	(A) Slate	(B) Schist
	(C) Phyllite	(D) Hornfels

195. Which of the following metamorphic facies is characteristic characteristics.		•		
	temperatures and minimum pressures?			
	(A) Blueschist facies	(B) Greenschist facies		
	(C) Sanidinite facies	(D) Hornblende facies		
196.	The conversion : Eclogites	→ Amphibolites is an example of		
	(A) Progressive regional metamorphism			
	(B) Retrograde metamorphism			
	(C) Autometamorphism			
	(D) Load metamorphism			
197.	Relicts of original minerals and textures found in metamorphic rocks are described as			
	(A) Palimpsest textures	(B) Nematoblastic textures		
	(C) Lepidoblsastic textures	(D) Decussate textures		
198.	New seafloor is created at			
	(A) deep-sea trench	(B) mid-ocean ridge		
	(C) subduction zone	(D) transform fault		
199.	The descend of oceanic lithosphere into the mantle is the process of			
	(A) Accretion	(B) Subduction		
	(C) Divergence zone	(D) Contraction fault		
200.	A pinacoid is a form consisting of			
	(A) 1-face	(B) 2-faces		
	(C) 3-faces	(D) 4-faces		
201.	In a monoclinic crystal which has maximum extinction angle is	β-angle of 109°, the plane displaying the		
	(A) (010)	(B) (011)		
	(C) (100)	(D) (001)		

202.	Aragonite and calcite have same che	mica	l composition. These represent;	
	(A) Polytypism	(B)	Polymorphism	
	(C) Pseudomorphism	(D)	Isomorphism	
203.	Chlorite is a			
	(A) Inosilicate	(B)	Tectosilicate	
	(C) Phyllosilicate	(D)	Nesosilicate	
204.	Slickenside striations on a fault plan	e hav	e a pitch of 90°. The fault is:	
	(A) a dip-slip fault	(B)	a strike-slip fault	
	(C) an oblique-slip fault	(D)	a transform fault	
205.	A sedimentary bedding dips 40° tov N10°W will be around:	wards	N45°W. Its apparent dip towards	
	(A) 25°	(B)	45°	
	(C) 60°	(D)	80°	
206.	An unconformity surface separates sedimentary strata dipping 60° towards N80°E below the unconformity, and strata dipping 5° towards N45°E above it. The structure is called:			
	(A) disconformity	(B)	non-conformity	
	(C) angular unconformity	(D)	paraconformity	
207.	A fine powdery rock flour produced fault surface is called:	by a	brasion and milling along a brittle	
	(A) cataclasite	(B)	gouge	
	(C) conglomerate		breccia	
208.	If the distance between two points o		•	
	distance between these two points on the field will be:			
	(A) 37500 mm		375 m	
	(C) 375 km	(D)	3750 cm	

209.	The frequency of repetitive coverage in photogeology and remote sensing in known as			
	(A) Spatial resolution	(B) Spectral resolution		
	(C) Radiometric resolution	(D) Temporal resolution		
210.	Which of the following is not a coas	tal landform		
	(A) Barrier island	(B) Spits		
	(C) Tombolos	(D) Doline		
211.	• •	before development of any structure is		
	termed as			
	(A) Superimposed river	(B) Antecedent river		
	(C) Captured river	(D) Diverted river		
212.	A dimensionless number that includes the effects of the flow characteristics,			
	velocity and depth, and the fluid density and viscosity is called as			
	(A) Reynolds number	(B) Manning roughness coefficient		
	(C) Froude number	(D) Viscosity Number		
213.	A cone shaped body that forms where a stream flowing out of mountains			
	debouches on to a plain is known as	(D) Plays		
	(A) Mound	(B) Playa		
	(C) Alluvial fan	(D) Terrace		
214.	The record of an earthquake is know	rn as		
	(A) Seismograph	(B) Seismometer		
	(C) Seismogram	(D) Diffractogram		
215.	Extinction of trilobites is due to the	fact that:		
	(A) they failed to adaptively radiate			
	(B) they were eaten up by sharks			
	(C) the water became toxic			
	(D) they reached acme of evolution			

216.	16. Which of the following time intervals witnessed huge basaltic volc		nessed huge basaltic volcanism in		
	India				
	(A) Cretaceous	(B)	Miocene		
	(C) Ordovician	(D)	Cambrian		
217.	The advent of animals with hard	parts / sk	eleton occurred at		
	(A) Precambrian / Cambrian boundary				
	(B) Base of Cretaceous				
	(C) Base of Pliocene				
	(D) Base of Jurassic				
218.	Which of the following time inte	rvals witr	nessed abundance of Dinosaurs		
	(A) Mesozoic	(B)	Cenozoic		
	(C) Paleozoic	(D)	Proterozoic		
219.	Banded Iron Formation of India	Banded Iron Formation of India is confined to			
	(A) Cretaceous	(B)	Miocene		
	(C) Precambrian	(D)	Ordovician		
220.	Which of the following fossils helped in reconstruction of "Gondwanaland"				
	(A) Glossopteris	(B)	Homo erectus		
	(C) Brachiopods	(D)	Phacops		
221.	Which one of the following geological formations contains diamondiferous conglomerates?				
	(A) Vindhayan Super Group	(B)	Siwalik Super Group		
	(C) Vaikrita Group	(D)	Karewa Formation		
222.	Which of the following channel pattern is a representative of very low energy				
	system				
	(A) Meandering	(B)	Braided		
	(C) Anastomosing	(D)	Straight		

223.	Varve deposits are formed in	
	(A) Glacial environment	(B) Aeolian environment
	(C) Coastal environment	(D) Fluvial environment
224.	The slow downward movement of	Soil caused by gravity is known as
	(A) A landslide	(B) Physical weathering
	(C) An avalanche	(D) Hillside creep
225.	_	ontinuous flow only during the late spring
		sed on this information, a geologist would
	classify this stream as:	(D) dandritia
	(A) perennial	(B) dendritic
	(C) intermittent	(D) ephemeral
226.	Rank these coals in order of qualit	ry (lowest to highest):
	(A) bituminous - lignite - anthrac	ite
	(B) anthracite - lignite - bitumino	us
	(C) lignite - anthracite – bitumino	ous
	(D) lignite - bituminous – anthrac	ite
227.	If the Earth's axis of rotation we	re not tilted, which one of the following
	statements would be true?	
	(A) equal day and night at all place	ces throughout the year
	(B) duration of day and night wi with time	ll depend on latitude but will not change
	(C) the poles will have daylight for	or six months
	(D) there will be no seasons	
228.	The angle between any line and	its horizontal projection measured in a
	vertical plane is the	of the line
	(A) Pitch	(B) Plunge
	(C) Dip	(D) Dip and Strike

229.	Mount Everest Limestone belongs to			
	(A) Ordovician	(B)	Silurian	
	(C) Devonian	(D)	Carboniferous	
230.	Syringothyris Cuspidata is the charac	eteris	tic fossil of	
	(A) Silurian	(B)	Lower Devonian	
	(C) Lower Carboniferous	(D)	Upper Carboniferous	
231.	The Earth's magnetic field has unde	rgon	e reversals in the past. The present	
	field is named after			
	(A) Gauss	(B)	Brunhes	
	(C) Olduvai	(D)	Matuyama	
232.	The age of Muth quartzite is			
	(A) Silurian	(B)	Ordovician	
	(C) Devonian	(D)	Archean	
233.	Permian is represented in Spiti by			
	(A) Kanwar	(B)	Guling System	
	(C) Muth Quartzite	(D)	Agglomerate Shale	
234.	'Ediacaran fossil's have significance	in de	etermining the	
	(A) Archean/Proterozoic boundary			
	(B) Permian / Triassic boundary			
	(C) Cretaceous / Tertiary boundary			
	(D) Precambrian / Cambrian bounda	ıry		
235.	In the Himalaya, rock layers often sh	now f	old structures, which have formed	
	by buckling in response to			
	(A) layer-parallel shear forces	(B)	cross-layer compressive force	
	(C) layer-parallel compressive force		•	

236.	A local water table positioned above the regional water table is said to be:			
	(A) stranded	(B) displaced		
	(C) perched	(D) depressed		
237.	What is the relative humidity when cubic meter and the air has a capacity	the absolute humidity is 3 grams per of 12 grams per cubic meter?		
	(A) 4%	(B) 9%		
	(C) 25%	(D) 400%		
238.	Which of the following gases are attrawarming	ibuted to anthropogenic cause of global		
	(A) ozone and methane	(B) nitrous oxide and sulfur dioxide		
	(C) methane and carbon dioxide	(D) ozone and carbon monoxide		
239.	The present concentration of carbon of:	lioxide in the atmosphere is in the range		
	(A) 1-10 parts per million	(B) 10-100 parts per million		
	(C) 100-1000 parts per million	(D) 1000-10,000 parts per million		
240.	We know that the OUTER core is liq	uid because:		
	(A) P waves pass through it	(B) S waves pass through it		
	(C) P waves cannot pass through it	(D) S waves cannot pass through it		
241.	A mineral crystallizing in isometric s	ystem has		
	(A) three optic axes	(B) one optic axes		
	(C) infinite optic axes	(D) two optic axes		
242.	A radioactive isotope having a half l	ife of 10 million years is reduced to its		
	quarter amount. What is the age of the rock?			
	(A) 2.5 million years	(B) 20 million years		
	(C) 40 million years	(D) 5 million years		

243.	which is a common ore of uranium?			
	(A) Azurite	(B) Celadonite		
	(C) Pitchblende	(D) Cubanite		
244.	·	s by streams or wave action leading to an		
	economic deposit results in a	The state of the s		
	A) Hydrothermal deposit	(B) Placer deposit		
	(C) Skarn deposit	(D) Stratiform deposit		
245.	The pathfinder element in the gold	deposit is:		
	(A) Arsenic	(B) Molybdenum		
	(C) Mercury	(D) Silver		
246.	A reverse fault dipping less than 45 degrees is known as:			
	(A) Thrust	(B) Overthrust		
	(C) Underthrust	(D) Upthurst		
247.	The Gutenberg discontinuity lies between:			
	(A) Outer core and lower mantle	(B) Lower mantle and upper mantle		
	(C) Outer core and inner core	(D) Crust and upper mantle		
248.	According to Anderson's theory of	of faulting, the principal stress axis σ_1		
	(maximum compressive stress) show	uld be horizontal during:		
	(A) strike-slip faulting	(B) normal faulting		
	(C) reverse faulting	(D) wrench faulting		
249.	To observe 0° declination, one must be positioned:			
	(A) away from a magnetic pole and on a line connecting both the magnetic			
	and rotational poles			
	(B) anywhere along the Equator, facing either north or south, only			
	(C) anywhere along the Equator, facing either east or west, only			
	(D) at a rotational pole, facing in an	ny direction		

250.	Mineralogically diorite is equivalent	of
	(A) basalt	(B) granite
	(C) gabbro	(D) rhyolite
251.	The deposition of suspended and disso	olved material in a soil profile is referred
	as	
	(A) Eluviation	(B) Illuviation
	(C) Leaching	(D) Enrichment
252.	Last Glacial Maximum (LGM) occu	rred around
	(A) 1 million years ago	(B) 20,000 years ago
	(C) 2 million years ago	(D) 1600 years ago
253.	Point bars are deposited:	
	(A) on the inside of stream meanders	8
	(B) on the outside of stream meande	rs
	(C) at the base of waterfalls	
	(D) in abrasion potholes	
254.	If the rate of relative sea level fall ex	ceeds rate of subsidence on a shoreline
	it will result in	
	(A) wide shelf area	(B) narrow shelf area
	(C) high gradient shelf	(D) low gradient shelf
255.	Bar finger sands in a delta are	
	(A) poorly sorted sands found in del	ta plain
	(B) well-sorted cross-stratified sands	s found in delta front
	(C) massive sand associated with de	
	(D) well-sorted sand found in prodel	ta
256.	A thin knife-like ridge of rock that se	parates two U-shaped glacial valleys is
	known as	
	(A) Drumlin	(B) Doline
	(C) Horn	(D) Arete

257. Lowest geothermal gradient is observed at		erved at		
	(A) Cratonic shields	(B) Mobile belts		
	(C) Subduction Zones	(D) Mid-oceanic ridges		
258.	The value of Poisson's ratio lies be	etween		
	(A) -1 and -2	(B) $-1/2$ and $+1$		
	(C) -1 and +1/2	(D) -1 and -1/2		
259.	A sand grain has a diameter of			
	(A) 2-4 mm	(B) 0.0625 - 2 mm		
	(C) 0.0039 - 0.0625mm	(D) > 4mm		
260.	This chemical reaction: 2Fe ₂ SiO ₄ example of:	$+4H_2O + O2 = 2Fe_2O_3 + 2H_4SiO_4$, is an		
	(A) dissolution	(B) hydration		
	(C) oxidation	(D) reduction		
261.	Conodonts appeared for the first ti	me in the geological record in		
	(A) Paleocene	(B) Triassic		
	(C) Devonian	(D) Ordovician		
262.	Which out of these is a planktonic	microfossil		
	(A) Lagena	(B) Nummulite		
	(C) Globigerina	(D) Rotalia		
263.	The significance of paleomagnetism in plate tectonics stemmed from			
	(A) one could measure depth of oceans			
	(B) it illustrated sea-floor spreading			
	(C) it contributed to the precise location of the North Pole			
	(D) it explained ocean floor metar	morphism		
264.	Convolute lamination is a			
	(A) Sole mark	(B) Bedding plane structure		
	(C) Intrabed structure	(D) Flame structure		

AWY-	-A l	[43] [P.T.O.		
	(C) Graphite	(D) Monazite		
	(A) Fluorite	(B) Fullerene		
271.	Ambadongar carbonatite c	omplex in India is famous for		
	(D) Kise along transform	шин		
	(D) Rise along transform:	• •		
	• •	nioff Zone as indicated by geochemical studies		
	(B) Occurs in thousands of	are as a result of magma generation in the Benioff Zone of kilometer wide zones		
270.	Magmas related to the isla			
270	Magmas related to the isla	nd are volcanoes		
	(C) Obduction zone	(D) Transform fault plate boundary		
	(A) Subduction Zone	(B) Divergent plate boundary'		
269.	In plate tectonics terms, th	e San Andreas Fault is a		
	(D) Absolute age of the se	edimentary rock		
	(C) Age of the next overly			
	(B) Oldest possible age of	the sedimentary rock		
	(A) Determining youngest	t possible age of the sedimentary rock		
268.	Absolute age of a dyke int	ruding into a sedimentary sequence is useful for		
	(C) Ferruginous deposits	(D) Calcareous deposits		
	(A) Argillaceous deposits	(B) Phosphatic deposits		
267.	Guano represent			
	(D) Alteration product of	calcareous rocks		
	(C) Chemical weathering	of volcanic ash		
	(B) weathering of gabbros	S		
	(A) weathering of granites	3		
266.	Bentonite is considered to have formed from			
	(D) High temperature, hig	h confining pressure and slow deformation		
	(C) Slow rate of deformat	ion		
	(B) High confining pressu	ire		
	(A) High temperature			

265. Ductile deformation signifies

272.	272. Cassiterite is the oxide ore mineral of	
	(A) Tin	(B) Tungsten
	(C) Tantalum	(D) Zinc
273.	The oldest rocks in the Singhbum – Or	rissa – Iron – Ore – Craton are designated
	as	
	(A) Ancient Supracrustals	(B) OMTG
	(C) OMG	(D) BIF
274.	Which one of the following minerals	shows parallel extinction?
	(A) Augite	(B) Hypersthene
	(C) Diopside	(D) Hornblende
275.	Emerald is a pale green variety of	
	(A) Topaz	(B) Zircon.
	(C) Beryl	(D) Tourmaline
276.	Which one of the following mineraresidue?	als dissolves into soluble ions without
	(A) kaolinite	(B) pyrite
	(C) selenite	(D) orthoclase
277.	Which amongst following is not the	nner planet of our solar system
	(A) Mars	(B) Mercury
	(C) Saturn	(D) Venus
278.	Nilgiri Hills near Madras are compos	sed of
	(A) Khodurite	(B) Charnokites
	(C) Anorthosites	(D) Khondalites
279.	The only place where the active mid-cabove sea level is:	oceanic ridge is exposed over the surface
	(A) Hawaii	(B) Iceland
	(C) Newzealand	(D) Japan
	(-)	(-)

[44]

[Contd...

AWY-A]

280.	The Island of Iceland is a unique exa	imple where coexist.		
	(A) MOR and hotspot	(B) Island are and hotspot		
	(C) Oceanic trench and MOR	(D) Island arc and OIB		
281.	Transform faults are in nature.			
	(A) Normal	(B) Reverse		
	(C) Strike slip	(D) Oblique slip		
282.	Addition of artificial or natural substances, such as nitrates and phosphates to			
	water bodies is called			
	(A) Hypoxia	(B) Eutrophication		
	(C) Anoxia	(D) Algal bloom		
283.	What type of structure results from the parallel alignment of abundant, coarse-grained, mica flakes in a metamorphic rock?			
	(A) schistosity	(B) gneissic banding		
	(C) slaty cleavage	(D) phyllitic structure		
284.	According to Bowen's experiments, the first mineral to crystallize from a melt at 1200°C is			
	(A) Quartz	(B) Olivine		
	(C) Amphibole	(D) Mica		
285.	Which of the following silicate minerals are most resistant to chemical weathering?			
	(A) Quartz	(B) olivine		
	(C) hornblende	(D) potassium feldspar		
286.	Which one of the following mineral shows strong pleochroism?			
	(A) Quartz	(B) Muscovite		
	(C) Orthoclase	(D) Hornblende		

287.	As per the BIS for Drinking water, the desirable limit for TDS is			
	(A) 300 mg/l	(B)	75 mg/l	
	(C) 750 mg/l	(D)	0.01 mg/l	
288.	For undisturbed, horizontal strata of sedimentary rocks, their age			
	(A) increases from top to bottom			
	(B) decreases from top to bottom			
	(C) can be determined from their co	lor		
	(D) is the same			
289.	Two sets of related folds whose axial surfaces are inclined towards one			
	another are called:			
	(A) Parallel folds	(B)	Similar folds	
	(C) Conjugate folds	(D)	Complex folds	
290.	A manganese-quartz-garnet-sillimanite-graphite rock is popularly called			
	(A) Gondite	(B)	Khondalite	
	(C) Granulite	(D)	Charnokite	
291.	High pressure polymorph of quartz is			
	(A) Coesite	(B)	Trydimite	
	(C) Alpha quartz	(D)	Crystobalite	
292.	The average thickness of the contine	ntal c	rust is about	
	(A) 35-40 km	(B)	100-200 km	
	(C) 1000-2000 km	(D)	5-10 km	
293.	An impermeable geologic formation that neither contains nor transmits water			
	is called			
	(A) aquifer	, ,	aquiclude	
	(C) aquifuge	(D)	aquitard	

294.	lens is called			
	(A) Porphyritic	(B) Aphanitic		
	(C) Phanitic	(D) Poikilitic		
295.	The Krol-Tal sequence of the Himalaya represents :			
	(A) Cretaceous-Tertiary boundary			
	(B) Permo-Triassic boundary			
	(C) Precambrian-Cambrian boundary			
	(D) Jurrasic-Cretaceous boundary			
296.	The crystal system rendering isotropism is:			
	(A) Tetragonal	(B) Hexagonal		
	(C) Orthorhombic	(D) Cubic		
297.	The youngest mountain chain in the world is			
	(A) Aravalli	(<mark>B)</mark> Himalaya		
	(C) Andes	(D) Rocky		
298.	Polished and striated surfaces that result from friction along the fault plane			
	are referred as:			
	(A) Boudinage	(B) Mylonites		
	(C) Slickensides	(D) Landslides		
299.	Suture zones' are produced by:			
	(A) Continental sliding	(B) Oceanic rifting		
	(C) Continental collision	(D) Oceanic collision		
300.	Siderite is an			
	(A) Iron sulphide	(B) Iron carbonate		
	(C) Iron Silicate	(D) Iron Oxide		