MATHEMATICS

The figures in the margin indicate full marks for the questions
Question Nos. 1 and 5 are compulsory. Candidates should answer three questions from the rest, selecting at least one from each Section

SECTION-A

1. Answer any five of the following :
(a) Show that the vectors $(1,3,2),(1,-7,-8)$ and $(2,1,-1)$ in \mathbb{R}^{3} over \mathbb{R} are linearly dependent.
(b) Prove that the vector space \mathbb{R}^{2} over reals \mathbb{R} is the direct sum of the subspaces $W_{1}=\langle(2,3)\rangle$ and $W_{2}=\langle(3,2)\rangle$.
(c) Show that $\sin x(1+\cos x)$ is a maximum at $x=\frac{\pi}{3}$ and neither maximum nor minimum at $x=\pi$.
(d) Show that

$$
\int_{0}^{1}\left\{\int_{0}^{1} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} d y\right\} d x=\int_{0}^{1}\left\{\int_{0}^{1} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} d x\right\} d y
$$

(e) Find the centre and radius of the circle $x^{2}+y^{2}+z^{2}-2 y-4 z=11$, $x+2 y+2 z=15$.
(f) Find the magnitude and the equations of the shortest distance between
. the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$.
2. Answer the following five questions :
(a) Show that $\{(1,1,0),(1,0,1),(0,1,1)\}$ form a basis for \mathbb{R}^{3} over \mathbb{R}.
(b) Show that the matrix

$$
A=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)
$$

is an orthogonal matrix.
(c) Reduce the following matrix to its echelon form and find its rank :

$$
A=\left(\begin{array}{rrrrr}
2 & 3 & 1 & 2 & 0 \\
0 & 3 & -1 & 2 & 1 \\
1 & -3 & 2 & 4 & 3 \\
2 & 3 & 0 & 3 & 0
\end{array}\right)
$$

(d) Verify the Cayley-Hamilton theorem for the matrix

$$
A=\left(\begin{array}{rrr}
-3 & 5 & 1 \\
2 & 0 & -1 \\
1 & -2 & 3
\end{array}\right)
$$

(e) Find the eigenvalues and eigenvectors of the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right)
$$

3. Answer the following five questions :
(a) If

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{3}-y^{3}}{x^{3}+y^{3}}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.
$$

show that
(i) f is continuous at $(0,0)$
(ii) $f_{x}(0,0) \neq f_{y}(0,0)$
(iii) f is not differentiable at $(0,0)$
(b) If $u=r \cos \theta$ and $v=r \sin \theta$, then show that

$$
\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}=0 \text { becomes }\left(\frac{\partial u}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial u}{\partial \theta}\right)^{2}=0
$$

(c) Show that

$$
\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}} \quad \text { for } b>a>0
$$

(d) Find the area of the region enclosed by the parabola $y^{2}=4 a x$ and the chord $y=m x$.
(e) Show that $2^{n} \Gamma\left(n+\frac{1}{2}\right)=1.3 .5 \cdots(2 n-1) \sqrt{\pi}$, where n is a positive integer.
4. Answer the following five questions :
(a) A variable plane is at a distance p from the origin and meets the axes at A, B, C. Find the locus of the centroid of the tetrahedron $O A B C$.
(b) Find the equation of the plane through the origin containing the line

$$
\frac{x-1}{5}=\frac{y-2}{4}=\frac{z-3}{5}
$$

(c) Find the equation of the sphere through the points $(0,0,0),(0,1,-1)$, $(-1,2,0)$ and $(1,2,3)$.
(d) Find the equation of the right circular cone generated when the straight line $2 y+3 z=6, x=0$ revolves about z-axis.
(e) Find the equation of the right circular cylinder if the radius of a normal section of the cylinder is 2 units and axis lies along the straight line

$$
\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z-2}{5}
$$

SECTION-B

5. Answer any five of the following :
(a) Solve

$$
\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y
$$

(b) Solve

$$
\left(D^{2}-1\right) y=x \sin 3 x+\cos x
$$

(c) A particle moves along a straight line, its distance x from a fixed point O on the line is $k \sqrt{\frac{c-x}{x}}$. Prove that the acceleration is directed towards O and is inversely proportional to the square of its distance from O.
(d) $A B C D E F$ is a regular hexagon of side a and forces represented in magnitudes and directions by $\overrightarrow{A B}, 2 \overrightarrow{A C}, 3 \overrightarrow{A D}, 4 \overrightarrow{A E}, 5 \overrightarrow{A F}$ act at A. Show that the magnitude of their resultant is $\sqrt{351} a$.
(e) Prove that
(i) $\operatorname{divcurl} \mathbf{F}=\nabla \cdot \nabla \times \mathbf{F}=0$
(ii) $\operatorname{curl} \operatorname{curl} \mathbf{F}=\operatorname{grad} \operatorname{div} \mathbf{F}-\nabla^{2} \mathbf{F}$
(f) Prove that a curve be a helix if and only if its curvature and torsion are in a constant ratio.
6. Answer the following five questions :
$12 \times 5=60$
(a) Solve

$$
x y\left(1+x y^{2}\right) \frac{d y}{d x}=1
$$

(b) Solve

$$
\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0
$$

(c) Find the general and singular solutions of the equation $y=p x-\sqrt{1+p^{2}}$.
(d) Using the method of variation of parameters, solve

$$
\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x
$$

(e) Solve

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x
$$

7. Answer the following five questions :
(a) A particle starts from rest and moves along a straight line with uniform acceleration f. At the end of time t, the acceleration becomes $2 f$; at the end of time $2 t$, it becomes $3 f$ and so on. Show that the velocity at the end of time $n t$ is $\frac{1}{2} n(n+1) f t$.
(b) A particle is projected with velocity V along a smooth horizontal plane in a medium whose resistance per unit mass is k (velocity). Show that the velocity v and the distance s after time t are given by $v=V e^{-k t}$ and $s=\frac{V}{k}\left(1-e^{-k t}\right)$.
(c) Forces $3,2,4,5 \mathrm{~kg}$ wt act respectively along the sides $A B, B C, C D, D A$ of a square $A B C D$. Find the magnitude of their resultant and the point where its line of action meets $A B$.
(d) Show that the system of coplanar forces acting on a rigid body is reducible to a single force acting at an arbitrary chosen point in the plane together with a couple in the plane. When will the system be in equilibrium?
(e) Discuss (i) equilibrium of fluids under a system of forces and (ii) centre of pressure.
8. Answer the following five questions :
(a) Find grad f for $f(\mathbf{r})=3 x^{2}+2 y^{2}+z^{2}$ at the point $(1,2,3)$. Hence calculate the directional derivative of $f(\mathbf{r})$ at $(1,2,3)$ in the direction of the unit vector $\frac{1}{3}(2,2,1)$.
(b) If \mathbf{r} is the usual position vector $\mathbf{r}=(x, y, z)$, show that
(i) $\operatorname{div} \operatorname{grad}\left(\frac{1}{\mathrm{r}}\right)=0$
(ii) $\operatorname{curl}\left[\mathbf{k} \times \operatorname{grad}\left(\frac{1}{\mathbf{r}}\right)\right]+\operatorname{grad}\left[\mathbf{k} \cdot \operatorname{grad}\left(\frac{1}{\mathbf{r}}\right)\right]=0$
(c) If $\mathbf{r}=(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+(a t \tan \alpha) \mathbf{k}$, find the value of
(i) $\left|\frac{d \mathbf{r}}{d t} \times \frac{d^{2} \mathbf{r}}{d t^{2}}\right|$
(ii) $\left[\frac{d \mathbf{r}}{d t}, \frac{d^{2} \mathbf{r}}{d t^{2}}, \frac{d^{3} \mathbf{r}}{d t^{3}}\right]$
(d) Find the curvature and torsion of the curve $x=a \cos t, y=a \sin t, z=b t$.
(e) State and prove Serret-Frenet formulae for a space curve.
