PHYSICS

Time allowed: Three Hours

Full Marks: 100

All questions carry equal marks.

Answer any FIVE questions.

1. (a) Using the Residue theorem, evaluate the integral,

$$\int_{0}^{\infty} \frac{x^{p-1}}{1+x} \, \mathrm{d}x, \ 0$$

(b) Find all square roots of the matrix,

$$A = \begin{pmatrix} 3/2 & 1/2 \\ 1/2 & 3/2 \end{pmatrix}.$$

(c) Solve the following equation using Laplace transform:

$$t F''(t) + F'(t) + t F(t) = 0$$

where F(0) = 1 and F'(0) = 0. (The prime symbol indicates differentiation w.r.t. t).

- 2. (a) Solve the problem of linear harmonic oscillator using Hamilton Jacobi equation.
 - (b) Find the total time derivative of H = H(q, p, t) in terms of Poisson bracket, where the symbols have their usual meaning.
- (c) Give the relativistic generalization of Newton's second law and deduce the relation E = mc². 6+4
 MSH-5329 1 (Contd.)

	3.	(a)	State the postulate(s) of non-relativistic quar		
			mechanics concerning the results of measureme	nt of	
20			an observable.	5	4
		(b)	Find the position operator in the momen	itum	Į.
			representation and verify that it is Hermitian.	5	
		(c)	State and prove Wigner-Eckert theorem.	2+8	
	4.	(a)	What is negative temperature? Find an expres	ssion	
			for the specific heat at constant volume of a sy	stem	
			which exhibit negative temperature and discus-	ss its	
		36	temperature dependence. 2+	6+2	
		(b)	Starting from the grand canonical partition fund	tion,	
			obtain an expression for the energy density is	n the	
			frequency interval v to $v + dv$ of black body radia	ition.	18
			Hence find the expressions of free energy and pre		
			of black body radiation.	6+4	
	5.	(a)	.		W
			electron gas and show that at low temperatur	e the	
			specific heat is proportional to temperature.	8	
	10	(b)	Derive the energy dispersion relation for la	ttice	
		iii	vibrations of a 1-dimensional chain of atoms.	6	
		(c)	Give an account of the Weiss theory.	6	
	6.	(a)	Discuss the vector model of LS coupling for	non-	
			equivalent valance electrons.	7	
	35	(b)	What do you mean by "Population inversion"?	Why	
		100	is it necessary for laser radiation?	6	
	ti ti	(c)	Explain the physics of holography.	7	
	MSH	I—532	29 2 (Co	ontd.)	

 (a) Assuming the nucleus to be a degenerate Fermi gas of Z protons and N neutrons, find an expression for the total zero point kinetic energy of the nucleus.

10

- (b) Following Fermi's theory of beta decay derive an expression for the time rate of emission probability of an electron with momentum within a range p to p+dp.
- 8. (a) Consider a fixed bias circuit of an n-p-n transistor (silicon) in CE configuration where the collector and the base are connected to + 10 volt dc supply through two resistors of magnitude 5 kΩ and 20 kΩ respectively; the emitter is connected to the common point. The d.c. current gain of the transistor is 80. Find the values of I_C and I_B. Is it possible to use the circuit as voltage amplifier? Explain your answer.

10

- (b) With a neat circuit diagram, explain the operation of a class-B push-full amplifier. 10
- 9. (a) Deduce the Newton-Raphson formula to find a root of the equation f(x) = 0 numerically.
 - (b) Write a C program to integrate a given function
 φ(x) from a given value c to another given value
 d using Simpson's ¹/₃ rule.

- 10. Write notes on any TWO of the following:-
 - (a) BE condensation
 - (b) Solid state microwave oscillators
 - (c) Elementary particles
 - (d) Relativistic electrodynamics.

2×10