JLR - 10/10 CHEMISTRY

Time: 3 hours

Full Marks: 100

The figures in the right-hand margin indicate marks.

Answer any five questions.

1. Write notes on the following:

 $5 \times 4 = 20$

- (a) Importance of DCC in synthesis
- (b) Mechanism of Osazone formation
- (c) DL and Cahn-Ingold-Prelog System in the Stereochemistry
- (d) Biochemical aspects of Zinc complexes
- 2. Predict the product(s) of the following. Give the mechanisms involved: $4 \times 5 = 20$

(a)
$$-C = C - + Mn(OAc)_3 \xrightarrow{HOAc}$$

(b) Ph
$$+ CH_3NO_2 \xrightarrow{Et_3N}$$
 Ph $+ CH_3NO_2 \xrightarrow{Et_3N}$ BF₄

(d) Ar – H + Ph – N – C – H
$$\xrightarrow{POCl_3}$$
 Me O

(e)
$$O \rightarrow OH$$
 $O \rightarrow OH$

_

- 3. How can the following synthesis achieved ? $5\times4=20$
 - (a) Anthranilic acid ----- Saccharin
 - (b) α -Naphthol $\longrightarrow \alpha$ -Alkylated amino naphthalene

(c)
$$Ph - N_3 \longrightarrow N$$

$$(d) \bigoplus_{\mathsf{Me}}^{\mathsf{Me}} \longrightarrow (?) \longrightarrow \bigcirc$$

- 4. (a) Discuss the theory of Emulsification.
- QS 2/5 (2) Contd.

10

8	,
89	(b) How do you determine the "Entropy" by
a a	Statistical method?
5.	(a) Discuss the theory behind radioactive
A 55	disintegration. 10
200	(b) What is Chemisorption? 5
1	(c) By applying Clapeyron-Clausius Equation,
. " 3	calculate the latent heat of vaporisation of
	water at 100° C. 5
) i	[Sp. volume of water vapour = 1674 cc and
** :	liquid water = 1 cc].
6.	(a) Explain the "Crystal Field Theory" of co-
20 E21	ordination compounds. 10
×	(b) Give the principle, working and applications
9 9	of AAS. 10
7.	(a) Comment on the structures of the following
e a	Werner's Complexes: 10
W)	(i) Os ₃ (CO) ₁₂
	(ii) Rh(CO) ₁₆
QS-	- 2/5 (3) (Turn over)
Q3 -	- 2/3 (Cumover)

(iii) (B ₄ H ₈) Fe(CO) ₃
(iv) Fe ₃ (CO) ₁₂
(b) What are "Cage compounds" or "Clathrate
compounds"? Why they are so important?
Can you separate Potassium and Nickel
from a solution using the above
compounds?
8. (a) Explain the different types of Symmetry
operations? What is the significance in
Chemistry?
(b) What do you mean by "Transport Number"?
How do you determine it?
(c) Explain, in brief, TG analysis. 5
9. (a) Explain "Magnetic Circular Dichroism". 5
(b) Write a note on "Heavy Metals". 7
(c) Explain the structures of the following: 8
(i) CO ₃ (CO) ₉ CH
(ii) CO ₄ (CO) ₁₂
QS-2/5 (4) Contd.

- 10. (a) Predict the splitting pattern of NMR (Proton) signals for the following compounds. Give the approximate 'δ' values also:
 - (i) H₃C
 - (ii) NO₂
 - (iii) CH₃
 - (iv) S CH₃
 - (b) Explain the terms Spin Decoupling and Anisotropic Effects. 5+5 = 10

