MATHEMATICS

Time allowed: Three Hours

Full Marks: 100

All questions carry equal marks.

Answer any FIVE questions.

(Symbols used have their usual meaning)

- 1. (a) If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that:
 - (i) $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_{n+1} \ge \cdots$ and
 - (ii) $\lim_{n\to\infty} a_n = 0$ show that the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n \text{ is convergent.}$$
 8

- (b) (i) Define (C, 2) summability. Show that:
 1, -1, 2, -2, 3, -3, ... is not (C, 1) summable but (C, 2) summable.
 - (ii) Determine all real values of x for which the following series converges:

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) \frac{\sin nx}{n}.$$

2. (a) Let f(z) be an analytic function in a simply connected domain D enclosed by a rectifiable Jordan curve

C and let f(x) be continuous on C. Show that

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dt$$

where z_0 is any point in D.

8

- (b) (i) Find the bilinear transformation which maps the points $z_1 = 2$, $z_2 = i$ and $z_3 = -2$ into the points $w_1 = 1$, $w_2 = i$ and $w_3 = -1$.
 - (ii) Represent the function $f(z) = \frac{z}{(z-1)(z-3)}$ by a series of negative powers of (z-1) which converges to f(z) when 0 < |z-1| < 2.
- 3. (a) State and prove Lebesgue's monotone converge theorem.
 - (b) (i) Construct a non-measurable set on the real line.
 - (ii) Prove that the function $\frac{\sin x}{x}$ is not Lebesgue integrable over $[0, \infty)$.
- 4. (a) State and prove Gauss-Bonnet Theorem on the total curvature.
 - (b) (i) On the paraboloid $x^2 y^2 = z$, find the orthogonal trajectories of the sections by the planes z = constant.

(ii) Obtain the curvature and torsion of the curve of intersection of two quadratic surfaces:

$$ax^2 + by^2 + cz^2 = 1$$
, $a'x^2 + b'y^2 + c'z^2 = 1$

5. (a) Using Gaussian elimination find the inverse of the matrix:

$$\begin{bmatrix} 4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2 \end{bmatrix}$$

(b) (i) Using a polynomial of the third degree, complete the record given below of the export of a certain commodity during the 5 years.

Year	2005	2006	2007	2008	2009
Export (in tons)	443	384		397	467

- (ii) Using the fourth order Runge-Kutta method, find an approximate value of y when x = 0.2 given that y' = x + y, y(0) = 1.
- 6. (a) Let X be a complete metric space, and let $\{F_n\}$ be a decreasing sequence of non-empty closed subsets of X such that $d(F_n) \to 0$. Show that $F = \bigcap_{n=1}^{\infty} F_n$ contains exactly one point.

1

(b) (i)	Let X be a second countable space	Ifama			
	empty open set G in X is represen	tod as 41			
7)	union of a class $\{G_i\}$ of open sets,	charmal as			
21 82	G can be represented as a countable	snow that			
	G' _i s.				
(ii)	Prove that any continuous image of a	6			
	space is connected.				
7. (a) Sta		6			
(b) (i)	ate and prove the Closed Graph Theor	em. 8			
(3) (3)	Prove that a normed space X is finite dir	nensional			
	if and only if the closed unit sphere compact.	e in X is			
(2)	1. NO. 10 100 100 100 100 100 100 100 100 100	6			
(ii)	are Duracti space (C/U, I], · _)			
	and the normed space (C'[0, 1], ·) where			
	$\ \cdot\ _{\infty}$ is the sub norm. Define the r	napping			
	$\Gamma: C[0, 1] \to C[0, 1]$ by (Tx) (t)	= xYt)			
	$x \in C''[0, 1]$. Prove that (1) T is not be	ounded			
	(2) T is closed.	6			
8. (a) Let.	I(i) denote the set of all complex number				
form	a + ib where a, b are integers. Prove	hat IIil			
is an	Euclidean ring	5: 8			
(b) (i)	Prove that the ideal $A = (a_0)$ is a maxim				
10	of the Euclidean ring R if and only if	a ice			
	prime element of R.	6 6			
(ii)	If L is an algebraic extension of K and				
an algebraic extension of F, show that L is an					
65 M	algebraic extension of F.				
MSH-5328	14	6			
		Contd.)			

- (a) Let V be a finite dimensional vector space over the field F, and let W be a subspace of V. Prove that dim W + dim W⁰ = dim V.
 - (b) (i) Let A be any m × n matrix over the field F.Show that the row rank of A is equal to the column rank of A.
 - (ii) If F is a field, and M is any non-zero ideal in F[x], show that there is a unique monic polynomial d in F[x] such that M is the principal ideal generated by d.
- 10. (a) Using Monge's method, solve the following equation:

$$2x^2r - 5xys + 2y^2t + 2(px + qy) = 0.$$
 8

- (b) (i) Establish the orthogonal property of Legendre's polynomials.
 - (ii) Find the inverse Laplace transform of:

$$\frac{2s^2 - 6s + 5}{s^3 - 6s^2 + 11s - 6}.$$