पर्यवेक्षकांच्या

ग

उघड

कालक सुनेपालक सावमान व स्थानिक संसालकालम् महाराष्ट्र राज्य सेवा, ठार-छ

परीक्षा रिकांक - 22/91/2019

2015

CODE: XO6

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका

एकूण प्रश्न : 100

वेळ : 1 (एक) तास चाळणी परीक्षा

एकूण गुण: 200

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसस्ता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमूद करावा**.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करावाना तो संवंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविण श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळन घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमृद केलेले उत्तर खोडता येणार नाही. नमृद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षांकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पढ़ील सूचना प्रश्नप्स्तिकेच्या अंतिम पृष्ठावर पहा

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

1.	Wh	ich novels are written by Agatha	Christy	<i>,</i> ?									
	(a)	Death on the Nile	(b)	Pale Horse									
	(c)	Murder on the Orient Express	(d)	Mouse Trap									
2.	Ans	swer options :											
	(1)	Only (a), (b), (c)	(2)	Only (a), (b), (d)									
	(3)	Only (b), (c), (d)	(4)	Only (a), (c), (d)									
2.	Whi		у Мал	rtina Hingis and Leander Paes in the current									
	(a)	(a) Australian Grand Slam											
	(b)	(b) Wimbledon											
	(c)	American Open Grand Slam											
	Ans	swer options :											
	(1)	Only (a)	(2)	Only (a), (b)									
	(3)	Only (a), (c)	(4)	All of the above									
3.	Consider the following statements :												
	(a) Delhi Government has launched India's First E-Ration Card Service.												
	(b) In this service, E-Ration Card will be linked with Pan-Card.												
	(c) The Service would cut down the delays in preparation of Ration Card and ensure fast delivery to the beneficiaries.												
	Which of the statements given above is/are correct?												
	(1)	Only (a) (2) (a) and (1)	o)	(3) Only (c) (4) (a) and (c)									
4.	Consider the following statements :												
	(a)	Declaration of a state animal in slaughtered within the state.	media	itely implies that the same animal cannot be									
	(b)	The state animal of Rajasthan (Ca Union for Conservation of Natu	,	s a threatened species as per the International Natural Resources.									
	Whi	ich of the above statements is/are	incor	rect ?									
	(1)	(a) only	(2)	(b) only									
	(3)	Both (a) and (b)	(4)	Neither (a) nor (b)									

5.	Consider the following statements:											
	(a)			at has S cour		appo	inted as the	Presi	dent of the Nev	w Devel	opment Bank of	
	(b)	The	head	quarte	r of th	ne Ne	w Developi	ment l	Bank is in Shan	ghai.		
	(c)	Befo	re ap	pointr	nent I	K.V. K	lamat has v	vorked	d as a Chairmai	n of the	IDBI Bank.	
	Whi	ch of	the st	ateme	nts gi	ven al	oove is/are	corre	ct ?			
	(1)	(a) a	ind (b)	(2)	(b) a	ınd (c)	(3)	(a) and (c)	(4)	(a), (b) and (c)	
6.	Who	o is th	e Chie	ef of t	he Int	ernati	onal Monet	ary Fu	und?			
	(1)	Chri	istine	Lagar	de		(2)	Ban	Kie Moon			
	(3)	Jane	t Johr	ison		(4) Rob		ert Dicosta				
7.	Mat	ch the	follo	wing l	List -	A (Re	serves of Ti	ger) w	vith List - B (Sta	ates)		
		List	- A				List - B					
		(Tig	er Re	serve)		(State)					
	(a)	Melghat			(i)	Karnatak	a					
	(b) Bandipur		(ii) Maharashtra									
	(c)	Muk	kandra	a Hills	;	(iii)	Telangan	a				
	(d)	Kawal					Rajasthar	1				
	Ans	wer o	ption	s:								
		(a)	(b)	(c)	(d)							
	(1)	(ii)	(i)	(iv)	(iii)							
	(2)	(ii)	(i)	(iii)	(iv)							
	(3)	(iii)	(iv)	(ii)	(i)							
	(4)	(ii)	(iii)	(iv)	(i)							
8.		n refer		o the S	Securi	ties ar	nd Exchange	e Boar	d of India (SEBI	() consid	er the following	
	(a)	It w	as esta	ablish	ed in	1988						
	(b)	The	SEBI	Act w	as en	acted	on April 1	2,1992				
	Whi						oove is/are					
	(1)						(2)					
	(3)	Both	(a) a:	nd (b)			(4)	Neit	ther (a) nor (b)			

9.	(1) (2) (3) (4)	wation concerni Within 24 hour Within 48 hour Within 10 days Within 30 days	s fron s fron from	n the receip n the receip the receipt	t of ap t of ap of ap	oplicat oplicat plicatio	tion tion on	ust be pro	vided	:	
10.	citiz	ording to Section en-information, ament or the sta	the d	lisclosure o					_		viledge of
					_		- (c)		(1)		
11.	The (1) (3)	altitude of bed co Dip Strike	onsists	s of :	(2) (4)	_	and St of the a				
12.	The	sedimentary roc	ks, w	nich are ma	ide up	of pa	articles	of finest §	grain	size, a	are known
	(1) (3)	sandstones argillaceous roo	ks		arenaceous rocks rudaceous rocks						
13.		riveri e have altered the				uent a	nd ofte	n disastroi	ıs floo	ods ar	nd some of
	(1)	Yamuna	(2)	Ganga		(3)	Kosi		(4)	Mal	nanadi
14.	The	Kaladgi formatio	ns res	emble cudo	lapahs	and i	in man	y places th	ey are	e cove	red by the
	(1)	Delhis	(2)	Deccan ti	rap		(3)	Archeans		(4)	Siwaliks
15.	Whie	ch rocks are gene Sedimentary		called as pr Igneous		rocks (3)		morphic	(4)	All	of these
16.		fluent seepage the Discharge of grand Movement of ware Percolation All of the above	ound vater f	water to su		round	water				
17.	Arte (1) (2) (3) (4)	sian conditions r due to presence when the well i when the well i usually at the c	e of a is sunl is sunl	broadly syr k at the exp k in the trou	osed g agh of	ground the sy	d surfa ynclina	ce at the hi l valley		level	

18.	In Deccan Traps (fractured rocks) whether the porosity and perviouness, decreases or increases markedly with depth :										
	(1)	remains same	(2)	increases		(3)	decreases	(4)	none of these		
19.	As	per WHO standa	rds the	e highest-lin	nit of	Nitrat	te as NO ₃ is :	_			
	(1)	100 mg/L	(2)	45 mg/L		(3)	500 mg/L	(4)	600 mg/L		
20.	The	water pollution	due to	agricultura	l activ	rities	includes :				
	(1)	Fertilizers			(2)	Pest	cicides and Insec	ticides			
	(3)	Farm animal w	vaste		(4)	All	of the above				
21.		sedimentary rockween:	ks and	d unconsoli	dated	mate	erials the value	of Re	sistivity ranges		
	(1)	10^2 to 10^8 ohm	.m		(2)	10^{0}	to 10 ⁴ ohm.m				
	(3)	10 ⁵ to 10 ⁸ ohm	.m		(4)	All	of the above				
22.		erial photography vind is known as		leviation of a	eropla	ane fr	om its original fli	ght lin	e in the direction		
	(1)	Crab	(2)	Drift		(3)	Sidelap	(4)	Overlap		
23.	Pen	eplain is formed	by the	e action of _		·					
	(1)	wind	(2)	river		(3)	sea	(4)	glacier		
24.	The	state of Maharas	shtra h	nas been div	ided i	into _	Hydr	ogeolo	gical Provinces.		
	(1)	Three	(2)	Six		(3)	Eight	(4)	Nine		
25.	The	water which is d	lriven	out of magr	na du	ring i	ts crystallization	is call	ed as :		
	(1)	meteoric water			(2)	volc	anic water				
	(3)	magmatic water	er		(4)	cosn	nic water				
26.	Aqu	ifuge is a relative	 ely	for	matio	n neit	ther containing r	nor trai	nsmitting water		
	(1)	Porous	(2)	Permeable	2	(3)	Impermeable	(4)	Jointed		
27.	The	subsurface occu	rrence	of ground	water	may	be divided into	zone	of aeration and		
	(1)	Vadose	(2)	Soil water	zone	(3)	Capillary zone	(4)	Saturation		
						~~~~					

28.	In i	gneous rocks, if the perce Acidic rock	entage of	silica is	is less than 44%, then that rock is termed as  Intermediate rock								
	(3)	Basic rock		(4)	Ultr	abasic rock							
29.	Wh	ich of the following are t	he examp	les of	raster	data ?							
	(1)	node, segment, polygo	ns										
	(2)	point, lines											
	(3)	satellite image, digital	photograp	phs									
	(4)	none of these											
30.	As	per BIS standards, the dr	inking wa	ater sh	ould l	have total har	dness :						
	(1)	300 to 600 mg/L		(2)	500	to 2000 mg/I							
	(3)	200 to 400 mg/L		(4)	up t	o 50 mg/L							
31.	Hov	v much percentage of ar	ea of Mal	narasht	ra is	occupied by I	Deccan Ti	rap formations?					
	(1)	about 72% of total area	a	(2)	abou	ut 82% of tota	ıl area	•					
	(3)	about 92% of total area	a.	(4)	abou	at 52% of tota	ıl area						
32.	The	The Piezometric surface is the upper surface of water in :											
	(1)	Confined aquifer		(2)	Unc	onfined aquif	er						
	(3)	Aquifuge		(4)	Rese	ervoir							
33.	The	VES is done to determin	e :										
	(1)	Lateral changes in resis	stivity	(2)	Vert	ical changes i	n resistiv	ity					
	(3)	Resistivity trenching		(4)	All	of the above							
34.		isoclinal fold, from the G	reek mear angle in t				efers to fo	lds in which the					
	(1)	different (2)	dip		(3)	equal	(4)	strike					
35.	The	Cretaceous rocks of fres.	h water o	rigin t	hat oc	curs near Na	gpur are	referred as :					
	(1)	Bagh Beds		(2)	Lam	eta Formatio	n						
	(3)	Laterites		(4)	Kala	idgi groups							
36.		river system within the ri laghat is named after :	idgelines į	provid	ed in	the Satmala - A	Ajanta and	l Harishchandra					
	(1)		Krishna		(3)	Тарі	(4)	Narmada					

XO6

37.	Mo	vement of water from surfa	ice into grour	idwater down to the water table is called as :								
	(1)	Effluent seepage	(2)	Influent seepage								
	(3)	Springs	(4)	Percolation								
38.	The	Bagh Beds occur in which	district and c	close to which river valley ?								
	(1)	Jalgaon district and Tapi		,								
	(2)	Dhule district (presently	Nandurbar d	istrict) and Narmada valley								
	(3)	Dhule district (presently	Nandurbar d	istrict) and Panzara valley								
	(4)	None of these										
39.	The	ability of the porous media	um to pass w	ater through it is known as :								
	(1)	Porosity	(2)	Permeability								
	(3)	Storetivity	(4)	Impermeability								
40.	What is the ideal spacing between two adjacent wells ?											
	(1)											
	(2)											
	(3)	beyond the radii of cones	of depression	า								
	(4)	within the radius of influ	ence									
41.	In tl	In the Purna alluvial areas, the southern part of basin is characterized by the presence of :										
	(1)	Saline water	(2)	Sea water								
	(3)	Rain water	(4)	All of the above								
42.	The	lower Gondwana is charac	terised by the	e presence of :								
	(1)	Glossopteris flora	(2)	Ptilophyllum flora								
	(3)	Foraminifera	(4)	Cycadophyta								
43.	The	olivine free Basalts are refe	erred as :									
	(1)	Tholeitic Basalt	(2)	Vesicular Basalt								
	(3)	Compact Basalt	(4)	Basanite								
44.	In d	isaster management the rer	note sensing	and GIS is extremely useful for :								
	(1) developing early warning system											
	(2) planning disaster response action plan											
	(3)	(3) determining best routes for relief supplies										
	(4)	all of the above										

8

<b>4</b> 5.	Whi	ch one of th	ie follo	owing	is not	an ac	quifer	?				
	(1)	Vesicular	Basalt	t			(2)	Weat	hered Basa	lt		
	(3)	Fractured	Basal	t			(4)	Mass	ive, Compa	ict Basa	alt	
46.		volume of th is called a		disch	narged	from	a un	iit prisi	m, as water	level	decr	eases by a unit
	(1)	Storage co	efficie	ent			(2)	Perm	eability coe	efficien	t	
	(3)	Safe yield					(4)	All of	f the above			
<b>47</b> .		ich kind o trophism ?	f mov	veme	nt of	the c	rust	of the	earth is	comm	only	described as
	(1) Gentle or severe, continuous or periodic											
	(2)	· ·										
	(3)											
	(4) All of the above											
48.	Trar	nspiration is	the p	art of	water	retur	ned t	o atmo	sphere by :			
	(1)	Oceans	1	(2)		etation		(3)	Mountains		(4)	Aquifers
49.	Which of the following rocks is an example of aquiclude ?											
	(1)	Shale					(2)	Basal	lt			
	(3)	Coarse Sa	nd Sto	one			(4)	Phyll	ite			
50.	Mat	ch the follow	 wing :							*		
	(a)	Soil water	,			(i)			ow water t	able		
	(b)	Pellicular				(ii)			the soil			
	(c)	Capillary				(iii)			rock surfa			
	(d)	Free water				(iv)	Mov	es in t	he upward	directi	on	
	Ans	wer options		(4)								
	(1)	(a) (b)	(c) (iii)	(d) (iv.)								
	(1) (2)	(i) (ii) (ii) (iii)	(iv)	(iv) (i)								
	(3)	(iii) (iv)	(i)	(ii)								
	(4)	(iv) (i)	(ii)	(iii)								
	( -)	(**)	(*1)	(111)								

51.	An	anticline is a fold wh	nich is general	lly :					
	(1)	Concave upwards		(2)	Convex downwa	rds			
	(3)	Convex upwards		(4)	None of these				
52.	The	fractures along which	ch there have	been :	no relative displace	ment are	called as :		
	(1)	Faults (2	2) Lineation	1	(3) Folds	(4)	Joints		
53.	The	ideal example of Aq	uifer :	-					
	(1)	Massive Granite		(2)	Shale and Clay				
	(3)	Sand Stone and Gr	ravel	(4)	None of the above	e			
54.		ich of the following andwater flow?	conventiona	ıl mea	sures is used for a	arresting	the sub-surface		
	(1)	cement bandhara		(2)	gabion structure				
	(3)	nala bunding		(4)	underground bar	ndhara			
55.		ch village from Mah	arashtra recei	ived N	Jational Water Awa	ard in 200	7 for watershed		
	(1)	Ralegaon Sindhi		(2)	Shivni				
	(3)	Hivre Bazar		(4)	Naigaon				
56.	The	porosity is equal to :							
	(1)	The specific yield							
	(2)	The specific retenti	ion						
	(3)	Safe yield							
	(4)	The sum of specific	c yield and sp	ecific	retention				
57.	The	term transmissivity	was introduce	ed by	:				
	(1)	Theiss		(2)	Darcy				
	(3)	Reynolds		(4)	None of the above	e			
58.	The	unit of apparent resi	istivity is :						
	(1)	ohms (2	2) ohm - see	<b>:</b>	(3) ohm - meter	rs (4)	ohm - liters		
59.	Resi	stivity curves for 3 la	ayers are gene	rally o	livided into :				
	(1)	H - type, A - type,	B - type, K - t	ype					
	(2)	H - type, K - type,	B - type, Q - t	ype					
	(3)	H - type, Q - type,	A - type, C - t	type					
	(4)	H - type, A - type,	K - type, Q - t	type					

60.	The water above the water table is					w	ater.					
	(1)	ground	(2)	vadose		(3)	surface	(4)	rain			
61.	Den	tal caries in h	ımans is	caused du	e to :							
	(1)	Exess amour	nt of fluo	ride	(2)	Low	ver concentrat	ion of flu	oride			
	(3)	Absence of f	luoride		(4)	Nor	e of the above	e				
62.	Kars	st topography	is the top	ography d	evelop	ed di	ie to the actio	n of :				
	(1)	Groundwate	er (2)	River		(3)	Glacier	(4)	Wind			
63.		fault planes a ks; such surfa					ted due to fri	ction bety	veen the faulted			
	(1)	Fault breccia	i		(2)	Slili	cification					
	(3)	Line of unco	nformity		(4)	Slicl	ken - sides					
64.	In h	istorical times,	what w	as the med	ium fo	r aeri	al photograph	ny ?				
	(1)	kite			(2)	pige	eon					
	(3)	hot air ballo	on		(4)	all o	f the above					
65.	Torr	ential rainfall	of short	duration us	ually	leads	to:					
	(1)	rapid rechar	ge to gro	undwater	(2)	rapi	d evaporatior	1				
	(3)	rapid infiltr	ation		(4)	rapi	d runoff					
66.		erally ground vever, in whicl					0 1		ward direction.			
	(1)	soil water zo	ne	-	(2)	zone	e of saturation	ı				
	(3)	capillary zor	ne		(4)	zone	e of influence					
67.		per the Groun i-critical catego		stimation	of 200	8 - 09	, how many	blocks are	in critical and			
	(1)	9 and 19	(2)	1 and 9		(3)	1 and 19	(4)	9 and 324			
68.	An aquifer may be defined as formation that contains sufficient saturated											
	(1)	Permeable	(2)	lmpermea	able	(3)	Compact	(4)	None			

69.	Stre	am frequency/I	Orainag	e frequency	y is de	termi	ned by dividing	:					
	(1)	The total num	ber of	stream by a	area of	Drain	nage Basin						
	(2)	Area of Drain	age Bas	sin by total	numb	er of	streams						
	(3)	Total lengths	of all th	ne streams b	oy Are	a of E	Basin						
	(4)	Area of Basin	by tota	l length of	all the	strea	ms						
70.		ridge like struct n inclined series				s/slop	pes on two sides	formed	by harder rocks				
	(1)	escarpment			(2)	but	te						
	(3)	mesa			(4)	hog	back						
71.	In h	ardrock areas of	f Maha	rashtra the	thickr	ess o	f saturated aqui	fer vari	es from :				
	(1)	3 to 10 meters			(2)	10 to 15 meters							
	(3)	5 to 7 meters			(4)	15 t	o 25 meters						
<del></del> 72.	The	The specific capacity of a well is :											
	(1)	discharge in l	m										
	(2) discharge per unit draw down in the well												
	(3) discharge per second												
	(4)	recharge per r	ninute										
73.	The most common drainage characterized by irregular branching of tributaries in various direction is referred as :												
	(1)	Trellis	(2)	Barbed		(3)	Dendritic	(4)	Deranged				
74.	An overflow of stream or a river inundating adjacent areas when runoff exceeds the capacity of its channel is termed as :												
	(1)	Landslide	(2)	Precipitat	ion	(3)	Floods	(4)	Waterfall				
75.	The	pH value of saf	e drink	ing water r	anges	betwe	een :						
	(1)	7.4 and 7.6	(2)	7 and 9		(3)	more than 8	(4)	5 and 7				
76.	Whe	en rock beds on t	he opp	osite sides a	are mo	ore or	less parallel the	unconf	ormity is known				
	(1)	Non-conformi	ty		(2)	(2) Disconformity							
	(3) Angular unconformity (4) None of the above												

77.		lithological ma itified based or		alse colo	our comp	osites	are used a	nd differei	nt rock	types are		
	(1)	spectral signa			(2)	digit	tal signatur	es				
	(3)	spatial signat			(4)	_	of the above					
78.	Mor	ains are the de	position	al land f	orms for	ned b	y:	,				
	(1)	River ,			(2)	Win	ıd					
	(3)	Sub-surface v	vater		(4)	Glac	ciers					
79.	Dias	trophism is an	example	e of :								
	(1)	Exogenous pr	ocess		(2)	End	ogenous pr	ocess				
	(3)	Masswasting	process		(4)	Non	e of the abo	ove				
80.		predominant ndara districts		pes belo	onging to	Arch	naeans and	occurring	in Na	gpur and		
	(1)	Quartzites, de	olomites	, amphil	bolites, so	hists a	and phyllite	es				
	(2)	,										
	(3)											
	(4)	None of these	?									
81.	The	quantity of wa	ter extra	cted by	gravity fi	rom u	nit volume	of aquifer	is called	 I :		
	(1)	Specific Reter	ntion		(2)		ctive Porosi	ity				
	(3)	Specific yield			(4)	Trar	nsmissivity					
82.	A g	eographical are	a that d	rains to	a commo	n poir	nt is termed	l as:				
	(1)	Reservoir			(2)	Wat	ershed					
	(3)	Water Table			(4)	All	of the above	e				
83.		v many ground mation Report			es are ex	isting	in the stat	te as per t	he Gro	undwater		
	(1)	6	(2)	5		(3)	4	(4)	2			
84.	In a	n unconfined a	quifer tl	ne grour	nd water	occurs	s under :			_		
	(1)	Hydrostatic p	ressure	•	(2)	Atm	nospheric pr	ressure				
	(3)	Shear pressur	re		(4)	All	of the above	e				
85.	_	 Digital model w wn as :	vith an a	array of	uniform	ly spa	iced elevati	ion data in	raster	format is		
	(1)	TIN	(2)	DEN		(3)	LISS	(4)	PAN	Ī		
			(2)	DEN		(3)	LISS	(4)	PAN	7		

The resistivity curves are obtained by plotting resistivity against:											
(1)	Spacing of electrodes										
(2)	Total distance between all electro	odes									
(3)	The distance between current ele	ectrod	les								
(4)	None of the above										
Whi	ich of the following are the function	ns of	watershed ?								
(1)	Transport and Storage	(2)	Cycling and Transformation								
(3)	Ecological Succession	(4)	All of the above								
The	volume of water moving down the	e char	nnel per unit time is called as :								
(1)	Recharge (2) Discharge		(3) Runoff (4) Infiltration								
The	source of pollution of groundwate	r can	be traced by which methods?	-							
(1)	chemical	(2)	bacteriological								
(3)	both (1) and (2) above	(4)	none of these								
The most important tool of watershed protection is :											
(1)	Groundwater use	(2)	Distribution of land								
(3)	Land use mapping	(4)	Land use planning								
Aerial Photography is helpful in exploration of groundwater, because it can be used:											
(1)	To determine the location of grou	ındw	ater								
(2)	To regulate the movement of gro	undv	vater								
(3)	To make proper utilization and c	onser	rvation of groundwater								
(4)	All of the above										
In th	ne process of eutrophication there i	s enri	ichment of water body with :								
(1)	Oxygen and Hydrogen	(2)	Nitrate and Sulphate								
(3)	Nitrogen and Phosphorus	(4)	Fluoride and Arsenic								
Fend	ce diagram is prepared by using :										
(1)	geology at different locations										
(2)	borehole yield at different geogra	phic	locations								
(3) borehole lithologs at different geographic locations											
(4) geophysical method											
	(1) (2) (3) (4) Who (1) (3) The (1) (3) Aer used (1) (2) (3) (4) In th (1) (3) Fend (1) (2)	(1) Spacing of electrodes (2) Total distance between all electro (3) The distance between current elect (4) None of the above  Which of the following are the function (1) Transport and Storage (3) Ecological Succession  The volume of water moving down the (1) Recharge (2) Discharge  The source of pollution of groundwate (1) chemical (3) both (1) and (2) above  The most important tool of watershed (1) Groundwater use (3) Land use mapping  Aerial Photography is helpful in estused: (1) To determine the location of groundwater (2) To regulate the movement of groundwater (3) To make proper utilization and contain the process of eutrophication there is (1) Oxygen and Hydrogen (3) Nitrogen and Phosphorus  Fence diagram is prepared by using: (1) geology at different locations (2) borehole yield at different geography	(1) Spacing of electrodes (2) Total distance between all electrodes (3) The distance between current electrod (4) None of the above  Which of the following are the functions of (1) Transport and Storage (2) (3) Ecological Succession (4)  The volume of water moving down the char (1) Recharge (2) Discharge  The source of pollution of groundwater can (1) chemical (2) (3) both (1) and (2) above (4)  The most important tool of watershed prote (1) Groundwater use (2) (3) Land use mapping (4)  Aerial Photography is helpful in explorused: (1) To determine the location of groundw (2) To regulate the movement of groundw (3) To make proper utilization and consert (4) All of the above  In the process of eutrophication there is enr (1) Oxygen and Hydrogen (2) (3) Nitrogen and Phosphorus (4)  Fence diagram is prepared by using: (1) geology at different locations (2) borehole yield at different geographic	(2) Total distance between all electrodes (3) The distance between current electrodes (4) None of the above  Which of the following are the functions of watershed? (3) Ecological Succession (4) All of the above  The volume of water moving down the channel per unit time is called as: (1) Recharge (2) Discharge (3) Runoff (4) Infiltration  The source of pollution of groundwater can be traced by which methods? (1) chemical (2) bacteriological (3) both (1) and (2) above (4) none of these  The most important tool of watershed protection is: (1) Groundwater use (2) Distribution of land (3) Land use mapping (4) Land use planning  Aerial Photography is helpful in exploration of groundwater, because it can used: (1) To determine the location of groundwater (2) To regulate the movement of groundwater (3) To make proper utilization and conservation of groundwater (4) All of the above  In the process of eutrophication there is enrichment of water body with: (1) Oxygen and Hydrogen (2) Nitrate and Sulphate (3) Nitrogen and Phosphorus (4) Fluoride and Arsenic  Fence diagram is prepared by using: (1) geology at different locations (2) borehole yield at different geographic locations							

94.	Maharashtra predominantly receives rainfall from which monsoon?									
	(1)	North	(2)	South		(3)	East - W		(4)	South - West
95.	Natural levels are long depositional ridges found on flood plain that are :									
	(1) Perpendicular to river			(2)	Parallel to river					
	(3)	3) In the course of river			(4)	None of the above				
96.	The individual lava flows of Deccan Trap are separated at some places by sedimentary beds known as:									
	(1) Intertrappean Beds			(2)	Infratrappean Beds					
	(3)	Red Bole			(4)	Intratrappean Beds				
97.	The erosion taking place due to the action of river water is called as:									
	(1)				(2)	fluvial erosion				
	(3)	glacial erosion			(4)	wind erosion				
98.	Hydraulic Conductivity is also referred as :									
	(1)	(1) Coefficient of Porosity			(2)	Coefficient of Permeability				
	(3)	) Transmissivity			(4)	Coefficient of Storage				
99.	In groundwater, the proportions of dissolved constituents as compared to surface water									
	are:									
	(1)	Lower	(2)	Equal		(3)	Higher	(4)	All c	of the above
100.	Afforestation and contour trenches are commonly constructed for :									
	(1)	1) Preventing evaporation loss								
	(2)	Preventing soil moisture								
	(3)	Arresting runoff and preventing soil erosion								
	(4)	Increasing weathering								

-000

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

## सूचना — (पृष्ठ 1 वरून पुढे...)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

## नमुना प्रश्न

प्र. क्र. 201. "अंगावर काटा उभा रहाणे" या वाक्यप्रचाराचा अर्थ काय?

(1) अंग शहारणे

- (2) रोमांचित होणे
- (3) अतिशय भिती वाटणे
- (4) बहरुन येणे

ह्या प्रश्नाचे योग्य उत्तर ''(3) अतिशय भिती वाटणे'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल, यास्तव खालीलप्रमाणे प्रश्न फ्र. 201 समोरील उत्तर-क्रमांक ''③'' हे वर्तृळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. क्र. 201. (1) (2) (4)

अशा पद्धतींने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK