90 MINUTES

1.	In IC, transistors are utilised as diodes. To get highest breakdown voltage for such diode, it is adjusted to have											
	A)	Ie=0	B)	Ic=0		C)	Vcb=0	D)	Vce=0			
2.		Aluminium is delay the character forward current Small delay the Large storage of Higher break delay the character for t	teristic nt due t ne fron time	o minorit	y carri	• •	semiconduc	tor, the d	iode			
3.	In IC f	abrication, the o	prication, the common form of PNP transistor is									
	A)	Vertical PNP		В	3)	Lateral	PNP					
	C)	Triple diffusion	n PNP	Γ))	Substra	te PNP					
4.	For falused is	oricating cost ef	fective	high valu	ed into	egrated	resistors in I	C, the mo	ethod			
	A)	Diffused resist	or	В	3)	Epitaxi	al resistor					
	C)	Pinched resisto					m resistor					
5.		pe number CA3	3741 op		_			ufactured	by			
	A)	RCA			/		nstruments					
	C)	Signetics		Γ))	Motoro	la					
6.	current	symmetrical et gain 100, consesistance in kO	stant cu	rrent sour								
	A)	2.5		В	3)	5						
	C)	10		Γ))	50						
7.	Compared to MOSFET operational amplifier, BJT operational amplifier has											
	A)	Higher input ro			_	_	slew rate					
	C)	Lower input cu	ırrent	Ľ))	Higher	voltage gain	l				
8.	kOhm	tal output offset , feedback resis t 100 nA is, abo	tance 1		input	offset v						
	A)	25 mV		В	3)	55 mV						
	C)	110 mV		Ε))	220 mV	7					
9.	bandw	inant pole compidth of 50 Hz. I	f it is c	onnected								
	A)	500 kHz			3)	50 kHz						
	C)	5 kHz			_	500 Hz						
	•				•							

10.	Speed of improvement of computation of 64 point DFT by using FFT compared to direct computation is about										
	A) C)	4 16			B) D)	8 20					
11.	Peak s A) C)	sidelobe amplit Hamming Hanning	ude (rel	ative) o	f -57 d B) D)	B is pro Blacki Bartle	man	window	function		
12.	Orbita A) C)	al altitude of M (10000 -2000 (200-600)km	0) km	llite is i	n the ra B) D)	(750-1	500)km of these				
13.	Moda A) B) C) D)	I dispersion pro Step index sir Step index mu Graded index Fiber with V	ngle mo ultimod multim	de fiber e fiber ode fibe		s less in					
14.	In opt A) C)	ical fiber, absor 80 1380	rption lo	oss peak	B) D)	s at wave 1050 1600	elength (in nr	n) of at	oout		
15.		to Z domain tra perimeter of u Backward diff Forward diffe Impulse invar Bilinear integ	init circ ference rence in riant tra	le with integratentegration	no alias tion on			rms ima	ginary		
16.	In CC A)	IR PAL B Tele 30.5	vision s B)	standard 33.4	ls, soun	d IF (in C)	MHz) is at 32.9	D)	37.1		
17.	Televi	ision channel al 47-68	llocation B)	n (in MI 174-23		VHF ba	and III is 470-582	D)	606-870		
18.	In sate A)	ellite communic 4-8	cation, I B)	Ku band 8-12	(in GF	Iz) refer C)	rs to 12-18	D)	18-27		
19.	Orbita A)	al velocity (in k 1.83	m/S) of B)	Geosyr 2.62	nchrono	ous satel C)	lite is about 2.91	D)	3.07		
20.	On Sn (in Oh A) C)	nith chart, the entry, the entry, R=0 Xc=0	eccentrio	c circle j	passing B) D)	through R=1 R=infi	•	enter rep	presents		

21.	Output of an op-amp is a square we microsecond and fall time of 4 mundistorted sine wave output of 2 N	microse	cond.Ma	aximum frequ		
	A) 100 B) 150	реак і	C)	200	D)	250
22.	Timer IC 555 has no pin for A) Threshold B) Set		C)	Trigger	D)	Control
23.	Timing resistor of a monostable us (in nF) required for pulsewidth of 1	_	s about			-
	A) 100 B) 300		C)	600	D)	900
24.	Angles in degrees of pole location approximation from either real axis	are			ı low p	ass filter
	A) +45,-45,+30,-30 C) +30,-30,+22.5,-22.5	B) D)		-67.5,+45,-45 -67.5,+22.5,-2	2.5	
25.	Maximum phase distortion is encou			•	proxim	ation
	A) Elliptic C) Chebyshev I	B) D)	Butter Invers	worth e Chebyshev		
26.	For an analog PLL, under perfection degrees) between input signal and A) 0 C) 120		_		phase o	lifference
27.	In PLL 565, timing components Supply voltage is +10V and -10V. VCO is about	of VC0) are 10			
	A) 250 Hz/V	B)	500 H			
	C) 750 Hz/V	D)	1000 I	Hz/V		
28.	The lock range of PLL is not govern	-				
	A) Low pass filterC) Amplifier	B) D)	VCO Phase	detector		
29.	•	,		detector		
29.	A circular radiation pattern is obtain A) Travelling wave antenna (T)		ıg			
	B) Rhombic antennaC) Yagi antenna					
	C) Yagi antennaD) Turnstile antenna					
30.	AM transmitter operating below abo	out 5 M	Hz usua	lly make use o	of	
	A) Marconi antenna	B)	Turnst	ile antenna		
	C) Hertz dipole	D)	roide	d dipole		

31.		gation medium	of the sign				,	
	A)	Space wave		B)		ce wave		
	C)	Sky wave		D)	LOS			
32.		JFET, drain sat gs= -2 V, drain 12.5 6.2			mA with 8.4 3.6	Vdd=10 V	, Vp=-5V	
33.		ared to wire resistors have adv Low value ter High thermal High speed of Large size	antage of mperature capacity	-	•	erature mea	surement,	
34.	Gauge A) C)	c factor of abou Constantan Nichrome V	t 5 can be	obtained u B) D)	sing strai Ferry Platin		ide of	
35.	Capac A) C)	itive transduce Mechanical c Noninvasive		acement a B) D)	Loadi	•	ement	
36.		NMOS transis		_			ox=20 A/	V^2 ,
	A)	meter, W= 40 2	B) 1.		C)	n mA) is 0.4	D)	0.2
37.		rier signal of n antenna. The					ılation is a	applied to
	A)	4800		50	(C)	950	D)	1350
38.	transis 32 wa	num junction to stor (in degree of atts, transistor vity of heat sin	Centigrade thermal fa	actor is 0	and 52. T	he set level	power diss	sipation is
	A)	1.8	B) 3.		C)	6.4	D)	9.8
39.	The m	nicroprocessor (Motorola		been deve	loped by C)	Intel	D)	Texas
40.	The FI A) C)	M radio broad 68-98 148 – 268	cast freque	ency band B) D)	88 -10			

41.	8051 r A)	nicrocontroller 128k	is capa B)	ble of a	ccessing	g extern C)	al memory of 32k	f D)	16k
42.	Typica A)	al bit rate in kbj 32-48	ps for v B)	oice end 48-64	coding u	using DI	M technique i 64-128	is D)	132-248
43.	If mod A)	lulation index is	s 0.6, m B)	naximun 30	n powei	efficien	ncy (in %) of 20	AM is a	about 10
44.	One ac A) C)	dvantage of AN Less power Simpler detec		suppress	sed carr B) D)	Less b	is andwidth r efficiency		
45.		andwidth and S tively. The cha 30 0.3				s) is arou 300		nd 30dE	3
46.	Rise ti A)	me of an ampli 2200	fier is f B)	Found to 1000	be 1.0	S, its ba	andwidth (in 350	kHz) is D)	around 220
47.	An em	uitter resistor is Gain	include B)	ed in CE Bandv	-	ier to in C)	crease S/N	D)	Stability
48.	Transr A) B) C) D)	resistance ampl Higher input r Lower input r Higher input r Lower input r	esistano esistano esistano	ce and le ce and le ce and h	ower ou ower ou nigher o	itput res tput res utput re	istance sistance		
49.	Freque A) C)	ency stability of Low Q High feed bac		l oscilla	tor is do B) D)	Low lo			
50.	forwar	CE amplifier, rd bias capacita capacitance in r 40 500	ance is	50 nF					
51.	For a t	transistor, Ceb=	=20pF, (Ccb=5p			ts figure of n	nerit (in	MHz) is
	about A) C)	65 130			B) D)	650 13			

52.		= angle(G(jw)H system, phase	~ //		is the g	ain cros	ssover frequen	icy of Bo	ode plot
	A)	-180+ Φ	<i>G</i>		B)	180- 0	Þ		
	C)	180+ Ф			D)	-180-			
	-,				-,				
53.		transmission ze	ros of a	networ			it is a		
	A)	HPF			B)	LPF			
	C)	BPF			D)	BEF			
54.	The i	nverse Laplace	trasforr	n of w	/[(s+a) ²	$^{2}-w^{2}1$	IS		
	A)	e ^{-at} cos(wt)			B)		(wt)		
	C)	e ^{-at} cosh(wt)			D)	e ^{-at} Sin			
	C)	e cosh(wt)			D)	c on	m(** t)		
55.		width of an RC						plifiers	are
	conne	ected in cascade	.Result	ant banc		in kHz)	is around		
	A)	200			B)	100			
	C)	60			D)	30			
56.	An an	nplifier which h	nac alma	net same	ogin g	nd innu	t resistance of	a CE an	nnlifier
50.		f higher bandwi		ost same	gain a	па тра	t resistance of	a CL an	принсі
	A)	Cascode amp			B)	Casca	de amplifier		
	C)	Darligton am			D)		nplifier		
	C)	Darington and	pilici		D)	CC an	принсі		
57.	Width	n of forbidden e	nergyba	and (in e	eV) of a	semico	onductor (eg.s.	ilicon) is	around
	A)	10	B)	6	,	C)	1	D)	0.1
	,		,			,		,	
58.		ity of an electro				rest an	d travelling to	a point	100 V
	above	the starting po	tential i	s aroun	d				
	A)	3600	B)	4000		C)	5100	D)	6000
59.		ectron having a							
		angle of 30degr		he field.	. The tir	ne of tr	avel (in nS)of	the elect	tron for
		evolution is abo							
	A)	1.78	B)	4.21		C)	7.82	D)	10.24
60	Dafla	ction of electron		in a CD	тіа				
60.						flaatina	- #1otos		
	A)	Inversly prop		_		-			
	B)	Directly prop							
	C)	Inversly prop							
	D)	Inversly prop	ortiona	to acce	eierating	gpotent	ıaı		
61.	The ty	ype of phospher	used in	n CRT 11	ised for	televisi	on is		
01.	A)	P11	B)	P4	.504 101	C)	P2	D)	P1
	11)		<i>D</i>)	1 1		\sim		יי	1.1

62.	At ve	ry high frequencies the type of	diode u	sed for rectification is
	A)	Abrupt junction	B)	Graded junction
	C)	Point contact	D)	Tunnel
63.	One o	of the necessary and sufficient	conditi	on for a network function
	N(s)=	=p(s)/q(s) to be a transfer funct		
	A)	_ ·	nomial	p(s) and q(s) must be real and those for
	>	q(s) must be positive		
	B)	Coefficients of $p(s)$ and $q(s)$		
	C)	be negative also	positiv	e and real but coefficients of q(s) can
	D)	Degree of $p(s)$ and $q(s)$ may	differ l	by either zero or one only
	D)	Degree of p(s) and q(s) may	differ	by either zero or one only
64.		which produce high Q factor		
	A)	On the negative real axis clo		
	B)	On the negative real axis aw	•	· ·
	C)	Complex poles away from in Complex poles near the ima		
	D)	Complex poles liear the lina	gmary	axis
65.				equation $S^4+2S^3+3S^2+4s+5=0$ has
	A)	No roots have positive real j		
	B)	One root has positive real pa		
	C)	Two roots have the positive None of these	real pa	rts
	D)	None of these		
66.	Cond			a two port network are respectively
	A)			
	C)	$Z_{12}=Z_{21}$ and $Z_{11}=Z_{22}$	D)	$Z_{22}=Z_{21}$ and $Z_{22}=Z_{12}$
67.	For a	two port network, with output	shorte	d, V1=25V, I1=1 A,I2=2A.
	With	input open circuited, V1=10 V	V, $V2 = 5$	$50 \text{ V,I2}= 2 \text{ A. } h_{12} \text{ and } h_{21} \text{ are}$
	A)	0.2 and 25	B)	
	C)	0.4 and 2	D)	0.2 and 2
68.	An ai	r core transformer has primary	and se	econdary inductors of 8mH and 10 mH
				H. The coefficient of coupling is
	A)	1/8	B)	1/6
	C)	1/4	D)	$\frac{1}{2}$
	,		,	
69.	An op	o-amp can be represented by		
	A)	Norator at input and Nullato		
	B)	Norator at output and Nullat	tor at in	put
	C)	Norator at input and output		
	D)	Nullator at input and output		

70.	The 8 A) B) C) D)	Programmab DMA control Priority internal Programmab	le inter ller rupt co	val timer ntroller	•	rocessor	is a		
71.	The nA)	naximum data t 100	ransmi B)	ssion rat 250	e of IE	EE-488 C)	bus in kbyte	s/S is D)	1000
72.	The b	oit addressable I 20-2F	RAM o B)	f 8051 a: 80-FF		yte locat C)	tion (in Hex) 30-7F	D)	30-FF
73.	On ch	nip oscillator of 2	(8051 l	nas a non 8	ninal fi	requenc C)	y (in MHz) o 10	f D)	12
74.	In 808 A) C)	85 instruction S 2 cycles and 5 cycles and	7T state	es	B) D)	-	le and 4T sta les and 9Tsta		
75.		order of priori) is for Trap	ty of ha	ardware i		pts of 80	085A, 3 rd prio	ority (in d	lescending
76.	In the A)	e flag register, p	arity fl B)	ag is at b B2	oit loca	tion C)	B4	D)	B5
77.	In the settin A)	e command instr g D0	ruction B)	word of	USAF	RT 8251 C)	, transmitter	is enable D)	d by D7
78.		ourrent in a 2 F Ily uncharged. I 5exp(-100t) 5(exp(-100t)-	nstanta	ineous po	ower d B)	ue to th		_	citor is
79.	A twi A) C)	n T network is BEF HPF	a filter	of kind	B) D)	LPF BPF			
80.	Fouri A) C)	er transform of F1(jw)*F2(jv [F(jw)*F2(jw	v)	2(t) is	B) D)		w)*F2(jw)](1 v)*F2(jw)exp		

81.	For an 8 bit DAC, reference voltage is 10 V. If input to DAC starting from MSB is 10111100, output (in volts) is								
	A)	5.8	B)	6.4		C)	7.3	D)	8.2
82.		it successive ape is 10 V.Convo 4 10	-			V inpu		Hz and	reference
83.		ADC, full sca V, number of b	-	•	tage is	about 1	0 V.For a res	olution	of about
	A)	6	B)	8		C)	10	D)	12
84.	time 1	nf induced in a 0mS. Its induct	ance (ir	n mH) v			_		
	A)	10	B)	50		C)	100	D)	1000
85.	by 100	has 100 turns p mA. Its inducta	ance (in	H) val					_
	A)	5	B)	10		C)	1	D)	0.1
86.		euit erasing and	prograi	mming				ne case	of
	A) C)	MROM EPROM			B) D)	PROM EEPR			
87.	The de	evice complexit	y is hig	hest for	r memoi	ry			
	A) C)	Flash PROM			B) D)	EEPRO EPRO			
0.0			.4•4• .			Liko	141		
88.	DRAN A)	A has the charac Higher power			B)	Lower	power consum	ntion	
	C)	Higher size	Consun	прион	D)	Higher		трион	
89.		lution of exp (-							
		$\exp(-(a+b)t)$				exp(-a			
	C)	exp(-bt)-exp(a	ιτ)		D)	None (of these		
90.		nse of $exp(-2t)$	of syste	em func	,				
	A)	$\exp(-3t)$			B)		$+\exp(-2t)$		
	C)	$\exp(-t)-\exp(-2$	t)		D)	None	of these		
91.		complementary	y BCD	code is			_		
	A)	7421 code			B)	5421 c			
	C)	2421 code			D)	5311 c	code		

92.	The 7 A)	bit ASCII code C8	of char B)	racter H 48	is	C)	51	D)	5A
93.	A fund A) C)	ctionally compl AND and NO AND and OR	Т	ration se	et of log B) D)	OR an	s is d NOT and AND		
94.	Numb A)	er of minterms	of func B)	tion f(a,	b,c)=ab	'+ac'+l C)	oc is 5	D)	6
95.	The Po	OS of the funct $(x' + y)(x + y)$ $(x' + y)(x' + y)$	' +z)	(2,4,5) i	is B) D)	` -	')(x'+y+z') of these		
96.		nmended I_{iL} (1 zero) is minim LS					the input vo	oltage ro	epresents S
97.	In the	snubber circud across it dam	iit used			to lim	it the peak vo	oltage o	vershoot 0.62
98.		de D, resistor R age V is applied es as V(1-exp(-t R/ Ldi/dt +Ri	d across				is put on, the -t R/L)		
99.	The sv A)	witching time (i	n S) o B)	f IGBT 10	is in the	e range C)	of 2	D)	0.5
100.		selenium cell p s in the waveler 300				relativ C)	e spectral sens	itivity m	naximum 550
