21102 90 MINUTES

1.

1.	A fun A) C)	1			B) D)	$\Omega(2^n)$ All of	the above				
2.	i. The ii. The	e class of regu	lar langu lar langu	age is cl	losed ur losed ur	der the	e union operat neatenation op r star operation	peration			
	A) C)	All of the ab Only i and ii			B) D)	Only Only	i and ii i				
3.	A) B)	{w w starts {w w has a {w w conta	and end t least on ins a sin	s with the 1}			lar expression bl}	$\sum^* 1 \sum^*$	=		
4.	i. {w ii. w		n even n				ssume alphaben exactly 2 1s}), 1}		
	A) C)	All of the ab Only ii and i			B) D)	Only Only					
5.		system with n sses that can b				um an	d maximum n	umber o	f		
	A)	0, n			B)						
	C)	$0, \infty$			D)	1, 1					
6.		Given a system with n processes, how many possible ways can those processes can be scheduled?									
	A)	2 ⁿ			B)	n!					
	C)	n(n+1)/2			D)	None	of the above				
7.	of 5, 1		re in the i				cesses with ex order should th				
	A)	5, 18, 9, 12			B)	5, 9, 1	2, 19				
	C)	5, 9, 18, 12			Ď)						
8.	logica	simple paging ll address spac ss space?	system ve, and a	with 2 ²⁴ page siz	bytes of e of 2 ¹⁰	f physio bytes,	cal memory, 2 how many bits	56 pages s are in 1	s of ogical		
	A)	24	B)	10		C)	34	D)	18		

9.	Dema A) B) C) D)	nd paging Fetches a page only when not be Fetches a page that is likely Pages out pages when that pages of the above	to be d	
10.	Which A) C)	n of the following page replac LRU LFU	ement p B) D)	oolicies, Belady's anomaly occurs? NRU FIFO
11.	Which A) C)	n command used to get the Ke vname -r vername -r	ernel Ve B) D)	ersion being used in linux? uname -r None of the above
12.		s a subset of the set of pages t		f pages loaded with an allocation of m is a page frame allocation of m + 1 is Dynamic algorithms None of the above
13.				0, 1, 4, 0, 1, 2, 3, 4 and number of page if applied FIFO algorithm will be 10 8
14.	i. It ta ii. It ta	n statement(s) about thread is akes less time to create a new akes less time to terminate a the mmunication overhead is mor	thread th	-
	A) C)	All of the above Only ii and iii	B) D)	Only i and ii Only i and iii
15.		f program where the shared meted individually is called Semaphores Critical section	B) D)	Directory None of the above
16.	Which A) C)	n is not a software life cycle n Water fall model Prototyping model	nodel? B) D)	Spiral model Capability maturity model
17.	Which A) C)	one is the most important fe Quality management Performance management	ature of B) D)	Spiral model? Risk management Efficiency management

18.		l-0 DFD is simil										
	A)	Use case diag		B)		xt diagram						
	C)	System diagra	am	D)	None	of the above						
19.	A COCOMO model is											
	A)											
	B)											
	C)											
	D)	Comprehensi	ve cost estim	ation mod	del							
20.	Which level of CMM is for basic project management?											
	A)	Initial		B)	Repea							
	C)	Defined		Ď)	Manag							
21.	Regre	ession testing is	primarily rel	lated to								
	A)	Functional testing B) Dataflow testing										
	C)	Development testing D) Maintenance testing										
22.	Purpo	ose of reverse er	ngineering is	to								
	A)	Recover infor document	mation from	the existi	ing code	or any other	interme	ediate				
	B)	Redocumenta	tion and / or	documen	t genera	tion						
	C)											
	Ď)	All of the abo										
23.	Which of the following is not a black box testing?											
	A)	Syntax testing	-	B)	-	effect graph						
	C)	Path coverage	2	D)	Bound	lary value ana	ılysis					
24.	A cable break in topology stops all transmission											
	A)	Mesh		B)	Bus							
	C)	Star		D)	Prima	ry						
25.	What	What is the main function of transport layer?										
	A)	Node to Node	e delivery									
	B)	Process to Pro		y								
	C)	Synchronization										
	D)	· · · · · · · · · · · · · · · · · · ·										
26.		ider a noiseless						a signal				
		two signal level										
	A)	6,000 bps	B) 3,00	00 bps	C)	1,500 bps	D)	9,000 bps				
27.		has		smission	rate in th	ne downstrear	n direc	tion than in				
		pstream directio										
	Δ)	VDSI	B) AD	CI I	C)	IZCIZ	D)	$\Delta \mathcal{R} R$				

29. Which one of the	andwidth is		4 (-) :-				
i. In FDMA the b ii. In TDMA the b iii.In CDMA one	channel car	just on	d into chan	hannels nel that	is time shared		
A) Only i & in C) Only i	i		B) D)	Only i			
30. WiMAX uses A) IEEE 802. C) IEEE 802.	11		ol B) D)		802.15 of the above		
31. 227.12.14.87 is a A) Class A C) Class C		Cla	ass add B) D)	ress Class Class			
32. ICMP is aA) Data link l C) Transport	ayer .	•	ocol B) D)		ork layer cation layer		
33. RIP usesA) Dijkstra's C) Bellman F			B)	Floyd	the routing tal Warshal algor of the above		
34. Port number associ	ciated with l B)	RPC is 123		C)	161	D)	153
35. If 10 people need Symmetric keys a A) 20		icate us	ing Syr	mmetrio	e Key Cryptog 45	graphy, - D)	55
B) Public Key C) Private Ke	y is used fo	encryp r encry	tion an ption a	d Priva		• 1	
37. How many comparation A : $A) N^2$ $C) (N^2+N-2)$		the inse	ertion s B) D)	ort use N (N - N (N-	+ 1)/2	st 1, 2,	,N?

38.	Solution to recurrence $T(n) = T(n/2 A)$ $\Theta(n \log n)$ $\Theta(\log n)$) is C)	$\Theta(n^2)$	D)	$\Theta(2^n)$
39.	Insertion sort is suitable when A) The size of the input is smal B) The input list is almost sorte C) The size of the input is large D) None of the above	ed				
40.	Maximum number of nodes in a bin A) 2^k B) 2^{k-1}	ary tree	e of dept C)	th k where k > 2 ^k -1	>=1 is D)	2 ^k +1
41.	Given the Preorder and inorder travelength Preorder: ABDHECFG Inorder: DHBEAFCG What is the postorder traversal?	ersal tra	avel of a	binary tree is	s as follo	WS
	A) HDBEAFGC	B)		BFGCA		
	C) HDBEAFCG	D)	HDBI	EACFG		
43.	Which of the following is essential form efficiently? A) An operator stack B) An operand stack C) An operand and operator stach D) A parse tree What will be the output after the fir following input?	ck		·	•	
	12, 36, 8, 3, 18, 11, 2, 45					
	A) 36, 12, 8, 3, 18, 11, 2, 45 B) 45, 2, 11, 18, 3, 8, 36, 1 C) 2, 36, 8, 3, 18, 11, 12, 4 D) 45, 36, 18, 12, 11, 8, 3,	2 5				
44.	Suppose the stack is implemented u for push and pop operation is	sing sir	ngly link	ted list. Then	the time	needed
	A) $O(n)$ B) $O(1)$		C)	O(log n)	D)	$\mathrm{O}(\sqrt{n})$
45.	Randomize quick sort expected run A) $\Omega(n \log n)$ C) $\Omega(n^2 \log n)$	ning tin B) D)	$\Omega(n^2)$	of the above		
46.	What is the height of an n element h A) $[\log n^2]$ C) $[\sqrt{n} \log n]$	neap? B) D)	[log n	_		

47.		of A is the arra		ation of max	heap?	r every node AREENT(i)]≥ AREENT(i)]<	A[i]	than the			
48.	Any (A)	comparison s $ \Omega(n^2) $ $ \Omega(\sqrt{n}\log n) $	_	n requires B) D)	$\Omega(\log \Omega)$	comparisor g n) log n)	ns in the	worst case			
49.	Dyna A) C)	mic program Recursive NP Compl		B)		mization Proble of the above	ems				
50.	The GA) B) C) D)	complexity class NP is Class of languages that can be solved by a polynomial time algorithm Class of languages that can be verified by a polynomial time algorithm Class of languages that can be verified by a exponential time algorithm None of the above									
51.	Which A) B) C) D)	If NP ≠ co-NP, then P = NP Class of NP language is closed under Kleene star									
52.		What is the output of the following recursive function if the value of m and n are 3 and 12?									
	{ if (n :	un(int m, int ==0) return return(fun(n	m;								
	A)	1	B)	3	C)	12	D)	4			
53.	The r	running time	of Floyd-Wa	arshall algor	ithm is						
	A)	$\Theta(n^2)$	B)	$\Theta(n^3)$	C)	$\Theta(nlogn)$	D)	$\Theta(n^2 log n)$			
54.	We u A) B) C) D)	B) Upper bound C) Lower bound that is not asymptotically tight									

55.	Which A) B) C) D)	of the following st $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$ $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(g(n))$ and	$g(n) = \Omega(f(n))$ $g(n) = \Theta(f(n))$	n)) (n))	f(n) = 0	$\Theta(g(n))$			
56.	Merge A) C)	sort algorithm clos Divide and Conqu Back tracking	-			nic programming			
57.	Quadr A) B) C) D)	h(k, i) = $(h_1(k) + ih_2(k)) \mod m$ h(k, i) = $(h_1(k) + c_1i + c_2i^2) \mod m$							
58.	Consider		gree t, ther	any in	ternal n	ode can have at most			
	A) C)	2t – 1 2t		B) D)	t-1				
59.	A lang A)	guage L is NP-hard Lε NP	iff	B)	I 1 < I	for every L ¹ ε NP			
	C)	Lε co-NP		D)		the above			
60.	projec		e less than the equal to re	s relatio n i an n	on, what	(n > 0) tuples. If we do a can we say about cardinality of			
61.	Armst A) B) C) D)		o derive al correctly ap	l valid I	FD's tha	cause at are satisfied by given relation not derive false dependencies			
62.		the relational scher following FD's can AC -> D ii)		l by usi		D's A -> B and BC -> D, which ence axioms AD -> B			
	A) C)	Only (i) (ii) & (iii)		B) D)	(i) & (i) & (ii) & (iii)				

		is the highest normal form of 1NF 3NF		ation? 2NF BCNF					
64.		ider the relation r(A,B,C,D), the relation R ₁ (AB) and R ₂ (CD) Lossless Dependency preserving Lossless and dependency provided Not lossless	. The d	ecompositions are					
65.	Whic A) B) C) D)	h statement about 2PL protoco 2PL guarantees serializabilit 2PL does not produce deadle 2PL is a concurrency contro 2 phases of 2PL are growing	ty ock l protoc	col					
66.	SELE A) B) C) D)	CCT COUNT(*) FROM R Number of distinct rows in the relation Number of attributes in the relation of the above	he relation R	tion R					
67.	Normal form associated with MVD is								
	A) C)	BCNF PJNF	B) D)	3NF 4NF					
68.	Incompatible operands to an operator is a								
	A) C)	Lexical error Semantic error	B) D)	Syntactic error Logical error					
69.	LR pa A) C)	arser uses technique Shift-Reduce Recursive descent parsing	B) D)	Predictive parsing None of the above					
70.		C can be used to generate auto its specification LR	matical	lly a Parser for a gramman					
	C)	SLR	D)	LALR					
71.	Impli A) C)	cit type conversion is called Narrowing Coercion	B) D)	Widening Type expression					

72.	Which A) C)	n parameter pas Call by value Call by Name		echanisn	n is use B) D)	Call b	anguage? y reference y value and Ca	ll by re	eference
73.	A typi A) B) C) D)	Parameter pass Book keeping Space for glo Space for loca	ssed to g inform bal vari	procedu nation		ı			
74.	Of the A)	e following whi Abstract Synt P-code	_	level in B) D)	Direct	liate representa ted Acyclic gra address code			
75.	int a =	utput of the foll =8; ("%d", a >> 2);		C progra	am frag	ment w	ill be		
	A)	32	B)	2		C)	4	D)	64
76.	int x, $x = y + +x \parallel$	is the output of y, z; = z = 1; ++y && ++z; ("%d%d%d		Č	C progr	am frag	gment?		
	A)	2 2 2	B)	2 1 1		C)	2 2 1	D)	111
77.	_	eriod of time du	_		mory a	ssociate	d with a variab	le is ca	alled
	A) C)	Scope Extent	ne varia	ioie	B) D)	Visibi None	lity of the above		
78.	int a,	the declaration b, *p, *q; h of the followi							
	A)	p = p - b	B)	p = -q		C)	p << = 1	D)	p = p + q
79.	Which A)	n of the followi x NAND x	•			quivale C)	nt to \bar{x} ? x NAND 1	D)	x NOR 1
80.	How 1 A)	many full adder n + 1	rs are re B)	equired t n – 1	o const	ruct an C)	n bit parallel ac n	dder? D)	n/2

81.		6 Processor, and the object of the control of the c		nt addres	ss = 100	5H an	d offset a	address =	=2410,	then what		
	A)	12460H	C 55 :		B)	2410	Н					
	C)	10050H			D)	1005						
82.	Which	of the follow	ing is th	ne zero ac	ldress i	nstruc	tion?					
	A)	CLC			B)	MOV	VE					
	C)	ADD			D)	Allo	of the abo	ove				
83.		in					-	from the				
	A)	POPF	B)	POPA		C)	POP		D)	RSTA		
84.		in										
	A)	INT 21H	B)	INT 2	3H	C)	INT 2	25H	D)	INT 27H		
85.		logical famil	-			-						
	A)	ECL	B)	CMOS	}	C)	TTL		D)	DTL		
86.		Which of the following statement is false?A) Web servers and clients communicate with each other through the platform										
	A)	Web servers independent		ents com	munica	ite wit	h each of	ther thro	ugh the	platform		
	B)	Web servers	often ca	ache web	pages	for qu	ick reloa	ding				
	C)	The information					ess logic	to con	trol the	e type of		
	D)	The apache					rm indep	endent				
87.		is Mi	icrosoft'	s XML p	arser							
		MSXML	B)	KXMI		C)	BareX	ML	D) 1	LibXML2		
88.	Which statement about XML is true?											
	A)	XML is not case sensitive										
	B)	Forward and			es delin	nit XN	IL mark	up text				
	C)	XML displa	-									
	D)	All XML sta	art tags r	nust have	corres	spondi	ng end ta	ıgs				
89.		Windows 2000 uses an authentication protocol called										
	A)	Diffie-Helln			B)		lham-Scl	ıroeder				
	C)	Otway-Rees			D)	Kerb	eros					
90.		MAC sub la	-		2.11 de				->	5 10		
	A)	LLC	B)	PCF		C)	DCF		D)	B and C		
91.		of the folentation?	llowing	memory	alloc	ation	scheme	suffers	from	External		
	A)	Segmentation	n		B)	Pure	demand	paging				
	C)	Swapping	•		D)		tiple cont		ixed na	rtitions		

92.	A high paging rate										
	A)	May cause high I/O rate									
	B)	Keeps the system well runni									
	C)										
	D)	D) Always creates a slow system									
93.	Whic	h of the following is not a fund	ction of	f bootstrap program?							
	A)	Initializing the CPU									
	B)	Initializing the memory contents									
	C)	Loading the operating systems									
	D)	D) Loading the compiler									
94.	execu	A processor that assigns new absolute address to a computer program during execution so that program may be executed from a different area of main storage									
	A)	Dynamic linking	B)	Dynamic relocation							
	C)	Dynamic loading	D)	None of the above							
95.		What is the result when a number and its two's complement are added to each other?									
	A)	1	B)	Number itself							
	C)	2 * number	D)	None of the above							
96.	What	What is binary equivalent of hexadecimal FACE?									
	A)		B)								
	C)	11111010111111100	D)	1100110011001100							
97.	An SR flip flop does not accept the input entry when										
	A)		B)	•							
	C)	Zero at S and one at R									
98.	A sni	ffer is									
	A)	A protocol									
	B)	A virus									
	Ć)	,									
		None of the above	•								
99.	DLP	is									
	A)	Dynamic Link Protocol	B)	Digital Light Processing							
	C)	Dynamic Library Package	Ď)	None of the above							
100.	An IP	v6 address is a	- bit ad	dress							
	A)	32	B)	64							
	C)	128	D)	256							
	/		/								