21102 90 MINUTES 1. | 1. | A fun
A)
C) | 1 | | | B)
D) | $\Omega(2^n)$ All of | the above | | | | | |----|-------------------|---|------------------------------------|-------------------------------|----------------------------------|----------------------|--|------------------------|----------------|--|--| | 2. | i. The
ii. The | e class of regu | lar langu
lar langu | age is cl | losed ur
losed ur | der the | e union operat
neatenation op
r star operation | peration | | | | | | A)
C) | All of the ab
Only i and ii | | | B)
D) | Only Only | i and ii
i | | | | | | 3. | A)
B) | {w w starts
{w w has a
{w w conta | and end
t least on
ins a sin | s with the 1} | | | lar expression
bl} | $\sum^* 1 \sum^*$ | = | | | | 4. | i. {w
ii. w | | n even n | | | | ssume alphaben exactly 2 1s} | |), 1} | | | | | A)
C) | All of the ab
Only ii and i | | | B)
D) | Only Only | | | | | | | 5. | | system with n
sses that can b | | | | um an | d maximum n | umber o | f | | | | | A) | 0, n | | | B) | | | | | | | | | C) | $0, \infty$ | | | D) | 1, 1 | | | | | | | 6. | | Given a system with n processes, how many possible ways can those processes can be scheduled? | | | | | | | | | | | | A) | 2 ⁿ | | | B) | n! | | | | | | | | C) | n(n+1)/2 | | | D) | None | of the above | | | | | | 7. | of 5, 1 | | re in the i | | | | cesses with ex
order should th | | | | | | | A) | 5, 18, 9, 12 | | | B) | 5, 9, 1 | 2, 19 | | | | | | | C) | 5, 9, 18, 12 | | | Ď) | | | | | | | | 8. | logica | simple paging
ll address spac
ss space? | system ve, and a | with 2 ²⁴ page siz | bytes of
e of 2 ¹⁰ | f physio
bytes, | cal memory, 2
how many bits | 56 pages
s are in 1 | s of
ogical | | | | | A) | 24 | B) | 10 | | C) | 34 | D) | 18 | | | | | | | | | | | | | | | | | 9. | Dema A) B) C) D) | nd paging Fetches a page only when not be Fetches a page that is likely Pages out pages when that pages of the above | to be d | | |-----|-----------------------|--|----------------------|--| | 10. | Which
A)
C) | n of the following page replac
LRU
LFU | ement p
B)
D) | oolicies, Belady's anomaly occurs?
NRU
FIFO | | 11. | Which
A)
C) | n command used to get the Ke
vname -r
vername -r | ernel Ve
B)
D) | ersion being used in linux? uname -r None of the above | | 12. | | s a subset of the set of pages t | | f pages loaded with an allocation of m is a page frame allocation of m + 1 is Dynamic algorithms None of the above | | 13. | | | | 0, 1, 4, 0, 1, 2, 3, 4 and number of page if applied FIFO algorithm will be 10 8 | | 14. | i. It ta
ii. It ta | n statement(s) about thread is
akes less time to create a new
akes less time to terminate a the
mmunication overhead is mor | thread th | - | | | A)
C) | All of the above
Only ii and iii | B)
D) | Only i and ii
Only i and iii | | 15. | | f program where the shared meted individually is called Semaphores Critical section | B)
D) | Directory None of the above | | 16. | Which
A)
C) | n is not a software life cycle n
Water fall model
Prototyping model | nodel?
B)
D) | Spiral model
Capability maturity model | | 17. | Which
A)
C) | one is the most important fe
Quality management
Performance management | ature of
B)
D) | Spiral model? Risk management Efficiency management | | 18. | | l-0 DFD is simil | | | | | | | | | | | |-----|---|---|---------------|------------|------------|----------------|---------|------------------------|--|--|--|--| | | A) | Use case diag | | B) | | xt diagram | | | | | | | | | C) | System diagra | am | D) | None | of the above | | | | | | | | 19. | A COCOMO model is | | | | | | | | | | | | | | A) | | | | | | | | | | | | | | B) | | | | | | | | | | | | | | C) | | | | | | | | | | | | | | D) | Comprehensi | ve cost estim | ation mod | del | | | | | | | | | 20. | Which level of CMM is for basic project management? | | | | | | | | | | | | | | A) | Initial | | B) | Repea | | | | | | | | | | C) | Defined | | Ď) | Manag | | | | | | | | | 21. | Regre | ession testing is | primarily rel | lated to | | | | | | | | | | | A) | Functional testing B) Dataflow testing | | | | | | | | | | | | | C) | Development testing D) Maintenance testing | | | | | | | | | | | | 22. | Purpo | ose of reverse er | ngineering is | to | | | | | | | | | | | A) | Recover infor document | mation from | the existi | ing code | or any other | interme | ediate | | | | | | | B) | Redocumenta | tion and / or | documen | t genera | tion | | | | | | | | | C) | | | | | | | | | | | | | | Ď) | All of the abo | | | | | | | | | | | | 23. | Which of the following is not a black box testing? | | | | | | | | | | | | | | A) | Syntax testing | - | B) | - | effect graph | | | | | | | | | C) | Path coverage | 2 | D) | Bound | lary value ana | ılysis | | | | | | | 24. | A cable break in topology stops all transmission | | | | | | | | | | | | | | A) | Mesh | | B) | Bus | | | | | | | | | | C) | Star | | D) | Prima | ry | | | | | | | | 25. | What | What is the main function of transport layer? | | | | | | | | | | | | | A) | Node to Node | e delivery | | | | | | | | | | | | B) | Process to Pro | | y | | | | | | | | | | | C) | Synchronization | | | | | | | | | | | | | D) | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | 26. | | ider a noiseless | | | | | | a signal | | | | | | | | two signal level | | | | | | | | | | | | | A) | 6,000 bps | B) 3,00 | 00 bps | C) | 1,500 bps | D) | 9,000 bps | | | | | | 27. | | has | | smission | rate in th | ne downstrear | n direc | tion than in | | | | | | | | pstream directio | | | | | | | | | | | | | Δ) | VDSI | B) AD | CI I | C) | IZCIZ | D) | $\Delta \mathcal{R} R$ | | | | | | 29. Which one of the | andwidth is | | 4 (-) :- | | | | | |--|---------------------|-------------------|----------------------|----------------------------|--|-----------------|-----| | i. In FDMA the b
ii. In TDMA the b
iii.In CDMA one | channel car | just on | d into chan | hannels
nel that | is time shared | | | | A) Only i & in C) Only i | i | | B)
D) | Only i | | | | | 30. WiMAX uses
A) IEEE 802.
C) IEEE 802. | 11 | | ol
B)
D) | | 802.15 of the above | | | | 31. 227.12.14.87 is a
A) Class A
C) Class C | | Cla | ass add
B)
D) | ress
Class
Class | | | | | 32. ICMP is aA) Data link l C) Transport | ayer . | • | ocol
B)
D) | | ork layer
cation layer | | | | 33. RIP usesA) Dijkstra's C) Bellman F | | | B) | Floyd | the routing tal
Warshal algor
of the above | | | | 34. Port number associ | ciated with l
B) | RPC is 123 | | C) | 161 | D) | 153 | | 35. If 10 people need Symmetric keys a A) 20 | | icate us | ing Syr | mmetrio | e Key Cryptog
45 | graphy, -
D) | 55 | | B) Public Key
C) Private Ke | y is used fo | encryp
r encry | tion an
ption a | d Priva | | • 1 | | | 37. How many comparation A : $A) N^2$ $C) (N^2+N-2)$ | | the inse | ertion s
B)
D) | ort use
N (N -
N (N- | + 1)/2 | st 1, 2, | ,N? | | 38. | Solution to recurrence $T(n) = T(n/2 A)$ $\Theta(n \log n)$ $\Theta(\log n)$ | |) is
C) | $\Theta(n^2)$ | D) | $\Theta(2^n)$ | |-----|--|----------------------|-----------------|----------------------------------|--------------|------------------------| | 39. | Insertion sort is suitable when A) The size of the input is smal B) The input list is almost sorte C) The size of the input is large D) None of the above | ed | | | | | | 40. | Maximum number of nodes in a bin A) 2^k B) 2^{k-1} | ary tree | e of dept
C) | th k where k > 2 ^k -1 | >=1 is
D) | 2 ^k +1 | | 41. | Given the Preorder and inorder travelength Preorder: ABDHECFG Inorder: DHBEAFCG What is the postorder traversal? | ersal tra | avel of a | binary tree is | s as follo | WS | | | A) HDBEAFGC | B) | | BFGCA | | | | | C) HDBEAFCG | D) | HDBI | EACFG | | | | 43. | Which of the following is essential form efficiently? A) An operator stack B) An operand stack C) An operand and operator stach D) A parse tree What will be the output after the fir following input? | ck | | · | • | | | | 12, 36, 8, 3, 18, 11, 2, 45 | | | | | | | | A) 36, 12, 8, 3, 18, 11, 2, 45
B) 45, 2, 11, 18, 3, 8, 36, 1
C) 2, 36, 8, 3, 18, 11, 12, 4
D) 45, 36, 18, 12, 11, 8, 3, | 2
5 | | | | | | 44. | Suppose the stack is implemented u for push and pop operation is | sing sir | ngly link | ted list. Then | the time | needed | | | A) $O(n)$ B) $O(1)$ | | C) | O(log n) | D) | $\mathrm{O}(\sqrt{n})$ | | 45. | Randomize quick sort expected run A) $\Omega(n \log n)$ C) $\Omega(n^2 \log n)$ | ning tin
B)
D) | $\Omega(n^2)$ | of the above | | | | 46. | What is the height of an n element h A) $[\log n^2]$ C) $[\sqrt{n} \log n]$ | neap?
B)
D) | [log n | _ | | | | 47. | | of A is the arra | | ation of max | heap? | r every node
AREENT(i)]≥
AREENT(i)]< | A[i] | than the | | | | |-----|-------------------|--|-------------|------------------------|-----------------------|--|-----------|---------------------|--|--|--| | 48. | Any (A) | comparison s $ \Omega(n^2) $ $ \Omega(\sqrt{n}\log n) $ | _ | n requires
B)
D) | $\Omega(\log \Omega)$ | comparisor
g n)
log n) | ns in the | worst case | | | | | 49. | Dyna
A)
C) | mic program
Recursive
NP Compl | | B) | | mization Proble of the above | ems | | | | | | 50. | The GA) B) C) D) | complexity class NP is Class of languages that can be solved by a polynomial time algorithm Class of languages that can be verified by a polynomial time algorithm Class of languages that can be verified by a exponential time algorithm None of the above | | | | | | | | | | | 51. | Which A) B) C) D) | If NP ≠ co-NP, then P = NP
Class of NP language is closed under Kleene star | | | | | | | | | | | 52. | | What is the output of the following recursive function if the value of m and n are 3 and 12? | | | | | | | | | | | | {
if (n : | un(int m, int
==0) return
return(fun(n | m; | | | | | | | | | | | A) | 1 | B) | 3 | C) | 12 | D) | 4 | | | | | 53. | The r | running time | of Floyd-Wa | arshall algor | ithm is | | | | | | | | | A) | $\Theta(n^2)$ | B) | $\Theta(n^3)$ | C) | $\Theta(nlogn)$ | D) | $\Theta(n^2 log n)$ | | | | | 54. | We u A) B) C) D) | B) Upper bound C) Lower bound that is not asymptotically tight | | | | | | | | | | | 55. | Which A) B) C) D) | of the following st
$f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$
$f(n) = \Theta(g(n))$ iff $g(n) = \Theta(g(n))$ and | $g(n) = \Omega(f(n))$
$g(n) = \Theta(f(n))$ | n))
(n)) | f(n) = 0 | $\Theta(g(n))$ | | | | |-----|-------------------------------|---|--|-----------------------------|--------------------------|--|--|--|--| | 56. | Merge
A)
C) | sort algorithm clos
Divide and Conqu
Back tracking | - | | | nic programming | | | | | 57. | Quadr
A)
B)
C)
D) | h(k, i) = $(h_1(k) + ih_2(k)) \mod m$
h(k, i) = $(h_1(k) + c_1i + c_2i^2) \mod m$ | | | | | | | | | 58. | Consider | | gree t, ther | any in | ternal n | ode can have at most | | | | | | A)
C) | 2t – 1
2t | | B)
D) | t-1 | | | | | | 59. | A lang
A) | guage L is NP-hard
Lε NP | iff | B) | I 1 < I | for every L ¹ ε NP | | | | | | C) | Lε co-NP | | D) | | the above | | | | | 60. | projec | | e less than the equal to re | s relatio
n
i
an n | on, what | (n > 0) tuples. If we do a can we say about cardinality of | | | | | 61. | Armst A) B) C) D) | | o derive al
correctly ap | l valid I | FD's tha | cause
at are satisfied by given relation
not derive false dependencies | | | | | 62. | | the relational scher
following FD's can
AC -> D ii) | | l by usi | | D's A -> B and BC -> D, which ence axioms AD -> B | | | | | | A)
C) | Only (i)
(ii) & (iii) | | B)
D) | (i) & (i) & (ii) & (iii) | | | | | | | | is the highest normal form of
1NF
3NF | | ation? 2NF BCNF | | | | | | |-----|---|---|-----------------------|--------------------------------------|--|--|--|--|--| | 64. | | ider the relation r(A,B,C,D), the relation R ₁ (AB) and R ₂ (CD) Lossless Dependency preserving Lossless and dependency provided Not lossless | . The d | ecompositions are | | | | | | | 65. | Whic A) B) C) D) | h statement about 2PL protoco
2PL guarantees serializabilit
2PL does not produce deadle
2PL is a concurrency contro
2 phases of 2PL are growing | ty
ock
l protoc | col | | | | | | | 66. | SELE
A)
B)
C)
D) | CCT COUNT(*) FROM R Number of distinct rows in the relation Number of attributes in the relation of the above | he relation R | tion R | | | | | | | 67. | Normal form associated with MVD is | | | | | | | | | | | A)
C) | BCNF
PJNF | B)
D) | 3NF
4NF | | | | | | | 68. | Incompatible operands to an operator is a | | | | | | | | | | | A)
C) | Lexical error
Semantic error | B)
D) | Syntactic error
Logical error | | | | | | | 69. | LR pa
A)
C) | arser uses technique Shift-Reduce Recursive descent parsing | B)
D) | Predictive parsing None of the above | | | | | | | 70. | | C can be used to generate auto
its specification
LR | matical | lly a Parser for a gramman | | | | | | | | C) | SLR | D) | LALR | | | | | | | 71. | Impli
A)
C) | cit type conversion is called
Narrowing
Coercion | B)
D) | Widening Type expression | | | | | | | 72. | Which
A)
C) | n parameter pas
Call by value
Call by Name | | echanisn | n is use
B)
D) | Call b | anguage?
y reference
y value and Ca | ll by re | eference | |-----|--------------------------------|---|---------------------------------|--------------------|----------------------|---|---|-------------|-----------| | 73. | A typi
A)
B)
C)
D) | Parameter pass
Book keeping
Space for glo
Space for loca | ssed to
g inform
bal vari | procedu
nation | | ı | | | | | 74. | Of the A) | e following whi
Abstract Synt
P-code | _ | level in B) D) | Direct | liate representa
ted Acyclic gra
address code | | | | | 75. | int a = | utput of the foll
=8;
("%d", a >> 2); | | C progra | am frag | ment w | ill be | | | | | A) | 32 | B) | 2 | | C) | 4 | D) | 64 | | 76. | int x, $x = y + +x \parallel$ | is the output of
y, z;
= z = 1;
++y && ++z;
("%d%d%d | | Č | C progr | am frag | gment? | | | | | A) | 2 2 2 | B) | 2 1 1 | | C) | 2 2 1 | D) | 111 | | 77. | _ | eriod of time du | _ | | mory a | ssociate | d with a variab | le is ca | alled | | | A)
C) | Scope
Extent | ne varia | ioie | B)
D) | Visibi
None | lity of the above | | | | 78. | int a, | the declaration b, *p, *q; h of the followi | | | | | | | | | | A) | p = p - b | B) | p = -q | | C) | p << = 1 | D) | p = p + q | | 79. | Which
A) | n of the followi
x NAND x | • | | | quivale
C) | nt to \bar{x} ? x NAND 1 | D) | x NOR 1 | | 80. | How 1
A) | many full adder
n + 1 | rs are re
B) | equired t
n – 1 | o const | ruct an
C) | n bit parallel ac
n | dder?
D) | n/2 | | | | | | | | | | | | | 81. | | 6 Processor, and the object of the control c | | nt addres | ss = 100 | 5H an | d offset a | address = | =2410, | then what | | | |-----|------------------------------------|--|---------------|------------|----------|---------|------------|-----------|----------|-----------|--|--| | | A) | 12460H | C 55 : | | B) | 2410 | Н | | | | | | | | C) | 10050H | | | D) | 1005 | | | | | | | | 82. | Which | of the follow | ing is th | ne zero ac | ldress i | nstruc | tion? | | | | | | | | A) | CLC | | | B) | MOV | VE | | | | | | | | C) | ADD | | | D) | Allo | of the abo | ove | | | | | | 83. | | in | | | | | - | from the | | | | | | | A) | POPF | B) | POPA | | C) | POP | | D) | RSTA | | | | 84. | | in | | | | | | | | | | | | | A) | INT 21H | B) | INT 2 | 3H | C) | INT 2 | 25H | D) | INT 27H | | | | 85. | | logical famil | - | | | - | | | | | | | | | A) | ECL | B) | CMOS | } | C) | TTL | | D) | DTL | | | | 86. | | Which of the following statement is false?A) Web servers and clients communicate with each other through the platform | | | | | | | | | | | | | A) | Web servers independent | | ents com | munica | ite wit | h each of | ther thro | ugh the | platform | | | | | B) | Web servers | often ca | ache web | pages | for qu | ick reloa | ding | | | | | | | C) | The information | | | | | ess logic | to con | trol the | e type of | | | | | D) | The apache | | | | | rm indep | endent | | | | | | 87. | | is Mi | icrosoft' | s XML p | arser | | | | | | | | | | | MSXML | B) | KXMI | | C) | BareX | ML | D) 1 | LibXML2 | | | | 88. | Which statement about XML is true? | | | | | | | | | | | | | | A) | XML is not case sensitive | | | | | | | | | | | | | B) | Forward and | | | es delin | nit XN | IL mark | up text | | | | | | | C) | XML displa | - | | | | | | | | | | | | D) | All XML sta | art tags r | nust have | corres | spondi | ng end ta | ıgs | | | | | | 89. | | Windows 2000 uses an authentication protocol called | | | | | | | | | | | | | A) | Diffie-Helln | | | B) | | lham-Scl | ıroeder | | | | | | | C) | Otway-Rees | | | D) | Kerb | eros | | | | | | | 90. | | MAC sub la | - | | 2.11 de | | | | -> | 5 10 | | | | | A) | LLC | B) | PCF | | C) | DCF | | D) | B and C | | | | 91. | | of the folentation? | llowing | memory | alloc | ation | scheme | suffers | from | External | | | | | A) | Segmentation | n | | B) | Pure | demand | paging | | | | | | | C) | Swapping | • | | D) | | tiple cont | | ixed na | rtitions | | | | 92. | A high paging rate | | | | | | | | | | | |------|--|--|----------|--------------------------|--|--|--|--|--|--|--| | | A) | May cause high I/O rate | | | | | | | | | | | | B) | Keeps the system well runni | | | | | | | | | | | | C) | | | | | | | | | | | | | D) | D) Always creates a slow system | | | | | | | | | | | 93. | Whic | h of the following is not a fund | ction of | f bootstrap program? | | | | | | | | | | A) | Initializing the CPU | | | | | | | | | | | | B) | Initializing the memory contents | | | | | | | | | | | | C) | Loading the operating systems | | | | | | | | | | | | D) | D) Loading the compiler | | | | | | | | | | | 94. | execu | A processor that assigns new absolute address to a computer program during execution so that program may be executed from a different area of main storage | | | | | | | | | | | | A) | Dynamic linking | B) | Dynamic relocation | | | | | | | | | | C) | Dynamic loading | D) | None of the above | | | | | | | | | 95. | | What is the result when a number and its two's complement are added to each other? | | | | | | | | | | | | A) | 1 | B) | Number itself | | | | | | | | | | C) | 2 * number | D) | None of the above | | | | | | | | | 96. | What | What is binary equivalent of hexadecimal FACE? | | | | | | | | | | | | A) | | B) | | | | | | | | | | | C) | 11111010111111100 | D) | 1100110011001100 | | | | | | | | | 97. | An SR flip flop does not accept the input entry when | | | | | | | | | | | | | A) | | B) | • | | | | | | | | | | C) | Zero at S and one at R | | | | | | | | | | | 98. | A sni | ffer is | | | | | | | | | | | | A) | A protocol | | | | | | | | | | | | B) | A virus | | | | | | | | | | | | Ć) | , | | | | | | | | | | | | | None of the above | • | | | | | | | | | | 99. | DLP | is | | | | | | | | | | | | A) | Dynamic Link Protocol | B) | Digital Light Processing | | | | | | | | | | C) | Dynamic Library Package | Ď) | None of the above | | | | | | | | | 100. | An IP | v6 address is a | - bit ad | dress | | | | | | | | | | A) | 32 | B) | 64 | | | | | | | | | | C) | 128 | D) | 256 | | | | | | | | | | / | | / | | | | | | | | |