1.	The free A) B) C) D)		includi t not sh and the	ng the nowing suppor	reaction the reacts or sur	s at the tions at	supports or su the supports o		es
2.	If the r A)	number of node 2n-1	es in a po B)	erfect fi 2n	rame is	n , then C)	the number of 2n-3	member	rs is n-1
3.		gular momentu d at radius <i>r</i> is	ım of a	-	f mass <i>i</i>	n rotati	ng about an ax	is with	angular velocity
	A)	mwr	B)	$m\omega r^2$		C)	$m\omega$	D)	$m\omega^2 r$
4.	equal t A) C)	o the moment of Lami's Theore Principle of m	of their i em noments	resultar	nt about B) D)	the sam Law of Varign	ne point." This f polygon of fo non's theorem	stateme orces	
5.	If the r		_		as the sa			he angle	between them
	A)	120°	B)	30°		C)	60°	D)	90°
6.	decele	icle starts from rates at a unifor st positions is t , $(\alpha+\beta)$ $t/2$ $(\alpha\beta t)/(\alpha+\beta)$	rm rate	of $\boldsymbol{\beta}$ m/	's ² till it	comes	to rest. If the tred by the particle /2	otal tim	er some time i e taken betweer
7.	elastic		mass 1	noving	in opp		lirection with		nother perfectly ity 20m/s. The
	C)	10 m/s			D)	14.14	m/s		
8.		son's ratio is 0. related as G= 0.33 E G= 0.4 E	.25, then	n the m	odulus (B) D)	of rigidi G= 0.5 G= 0.2	5 E	modulu	s of elasticity
9.		ermal stress in e modulus of el Eα/ΔΤ			given by		expansion (α), E Δ T/ α	rise in te	emperature (ΔT) EαΔT

10.		ongitudinal stres				liameter (D)	, length (L) and thickness
	A)	PD/(4t)	B)	PD/(2t)	C)	2PD/t	D)	4PD/t
11.	The bu A) B) C) D)	One end of the Both ends are One end is fix Both ends are	e colum fixed ced and	in is fixed and other end is fi	other en			
12.	free er	nd. The shear fo		gram will be			a distance	a (a < l) from the
	A) C)	A rectangle A trapezium		B) D)	A tria A par	_		
13.		lid shaft can reser, then the mand 5 kN-m 4.5 kN-m		_		lied is m	visting mo	ment of 4 kN-m
14.	The in located A) B) C) D)		the roll contact the circu	ing link umference sea	ited verti	11 0	•	her fixed link is ontact point
15.	The ve A) B) C) D)	Product of any p Product of any Zero Product of any points Product of squ points	gular ve gular ve	elocity of the l	ink and	the distance	between to	he points between the
16.		der sliding at ration of the sli 40 cm/s ² 40π cm/s ²		s on a link, B) D)	which 0.4π c 20 cm	em/s ²	at 60 rp	m. The Coriolis
17.		velocity and a unism with cran 0 and 0 0 and $<\omega^2$ r				will be respondent $\omega^2 r$		in slider-crank

18.	When the axes of the driver and driven shafts are co-axial, the compound gear train is known as										
	A)	Simple gear	train		B)	Differ	ential gear tr	ain			
	C)	Reverted ge			D)		clic gear train				
19.	In a f	lywheel, the n	naximum	fluctuat	tion of	energy	IS				
	A)	•					minimum ene	ergies			
	B)	The sum of	the maxi	mum an	d mini	mum en	ergies				
	C)	The ratio of									
	D)	The ratio of	the mini	mum en	ergy to) maxim	um energy				
20.	The p	oiston effort fo	r a vertic	al engin	e inclu	ides					
	A)	Pressure for		_							
	B)						frictional res				
	C)						weight of the	1			
	D)	Pressure for resistance	ce due to	gas, inc	ertia fo	rce, wei	ght of the pis	ton and f	rictional		
21.		spring mass s half. The natu Halved Unaffected				ion is Doub		and the s	pring stiffn	ess is	
22.		orsional stiffn									
	A)	Directly proportional to its length									
	B)	Independent of its length									
	C)	Inversely proportional to its length Proportional to square of its length									
	D)	Proportiona	i to squai	re or its	lengtn						
23.		Resonance is a phenomenon where frequency of exciting force is the natural									
	A)	ency of the sy double	B)	half		C)	equal to	D)	thrice		
	11)	double	D)	11411		C)	equal to	D)	timice		
24.		aft has two hea	-		ed on i				al speed(s).		
	A)	one	B)	two		C)	four	D)	eight		
25.		particles of a			ng a ci	rcular a	rc, whose cer	ntre lies i	n the axis	of the	
	-	. The type of v		is then							
	A)	Torsional vi			B)		itudinal vibra	tion			
	C)	Transverse	vibration		D)	Latera	al vibration				
26.	The t	ype of dampin	g due to	sliding	of two	dry surf	aces is terme	d as			
	A)	Viscous dar	nping		B)	Coulc	mb damping				
	C)	Structural d	amping		D)	Interf	acial damping	g			

27.	The th A)	neoretical stress	s conce B)	ntration 2.0	factor 1	for a pla C)	te with a cir 2.5	cular hole D)	under tensi 3.0	on is
28.	The fa A) B) C) D)	Elastic limit Young's mod Endurance lin Elastic limit	to the walulus to the total	vorking so the ulting the works	stress mate stre	rength	of			
29.	A) B) C) D)	er to reduce th High coeffici Low coeffici Zero coeffici Negative coe	ent of lent of lient of lent o	inear exinear exinear exi	pansior pansion pansion r expan	n sion			-	
30.		n theory of fai is equal to the Von Mises th Rankine's the	elastic neory			? Guest	y occur wh s's theory nant's theory		ximum pri	ncipal
31.	An ax A) C)	le is subjected Bending only Torsion only	1		B) D)		t load only ing and torsi	on		
32.		lti-disc clutch l umber of pairs 2				driving s	shaft and tw	o discs on D)	the driven	shaft.
33.		fe of a ball be sed to 3 kN, ke 9000	_					life in hor	urs, if the less 5000	oad is
34.	No ax A) C)	ial thrust is exp Helical gears Spiral gears	-	ed in	B) D)		gears	s		
35.	The ditime TA)	imension of kinn is ML ⁻¹ T	nematic		ty in tei	rms of the		n of mass	M, length I	and
36.		ly in floatation The metacen The metacen The CG is be The CG coin	at the f tre is at tre is be low the	ree surfa bove the clow CG	ace of a CG of of the of buoy	fluid is the body body ancy	stable if	2)	~.	

<i>31</i> .		vertea U tube n								
	A)	To measure la					.: 4 : 1 41.	41	-: <i>C</i> ::-1-4	- C
	B)	When the spe flowing fluid	ecific we	eignt of	manom	ietric iit	iid is iess tr	ian the spe	cific weight	01
	C)	To measure p	ressure	at a poi	nt in a f	flowing	fluid			
	D)	To measure the	he dynai	mic pres	ssure of	f a movi	ng stream o	of fluid		
38.		erm of the Ber		equation	on state	d in the	form P + v	$wz + \rho V^2/2$	2 = constant	has
	A)	Mass	B)	Weigh	nt	C)	Area	D)	Volume	
39.	tube i	eynolds's num s increased by er for the same	25% a	nd the						
	A)	4000	B)	4200		C)	3800	D)	3000	
40.		atio of maximu hrough a circul			verage	velocity	y of a fully	developed	l laminar vis	cous
	A)	1.732	B)	1.414		C)	2.0	D)	3.0	
41.	plate p	redominant for blaced in a unif	orm flo	w are						a flat
	A)	Inertia and pr			B)		us and press		}	
	C)	Viscous and b	oody for	rces	D)	Visco	us and inert	tia forces		
42.	Which	of the followi	ng is the	e best th	ermal i	nsulato	r material?			
	A)	Saw dust			B)	Glass	wool			
	C)	Cork			D)	Asbes	tos sheet			
43.	A composite wall has two layers of different materials with thermal conductivity k_1 and k_2 . If each layer has same thickness, the equivalent thermal conductivity will be									
	A)	k_1k_2			B)	$\mathbf{k}_1 + \mathbf{k}_1$				
	C)	$(k_1 + k_2)/(k_1k_2)$	(2)		D)	$2k_1k_2$	(k_1+k_2)			
44.	The di	imensionless qu	uantity ı	ised in t	transien	t heat c	onduction is	S		
	A)	Grashoff num	nber		B)	Lewis	number			
	C)	Biot number			D)	Schmi	idt number			
45.	materi	uminium (k= 2 ial of k=0.04 V ess of insulation	W/mK.	If the						
	A)	1.5 mm			B)	8 mm				
	C)	3 mm			D)	4 mm				

46.	Which of the following statements about fins is wrong?											
	A)	Fin effective	_				_	mal co	nducti	vity.		
	B)	Use of thin,	but close	ely spaced	l fins	is prefe	rred in m	ost eng	ineeri	ng appli	ications.	
	C)	Use of fins coefficient is	can be									
	D)	The need fo	_	ronger wl	hen th	ne surfac	ce heat tr	ansfer is	s by fr	ee conv	ection.	
47.	The Prandtl number is the ratio of A) The momentum and mass diffusivities											
	A)											
	B)	The momen				vities						
	C)	The thermal			ities							
	D)	The inertia	and visco	us forces								
48.		rate at which rate directions		is emitted	l per	unit are	a at all p	ossible	wavel	engths	and in al	
	A)	Total emiss	ive power	r	B)	Mono	chromat	ic emiss	sive po	ower		
	C)	Radiosity			D)	Irradi	ation					
49.	A bo	A body whose reflectivity is unity is called a A) White body B) Black body										
	A)	White body			B)							
	C)	Transparent	body		D)	Gray	body					
50.		locity of wate ficient between					ubled, the	e turbul	lent fl	ow hea	t transfe	
	A)	Remains unchanged										
	B)	Increases to double its value										
	C)	Increases but will not reach double its value										
	D)	Increases to	more tha	ın double	its va	alue						
51.	100	A cross flow heat exchanger has an area of 50m ² . The overall heat transfer coefficient is 100 W/m ² K and heat capacity of both hot and cold fluids is 1000 W/K. The value of NTU is then										
		1000	B)	100		C)	5		D)	0.2		
52.	Whic	ch of the follow	ving sets	have all i	ntens	ive prop	perties?					
	A)	Which of the following sets have all intensive properties? A) Pressure, temperature, density, specific volume										
	B)											
	C)	Pressure, en										
	D)	Pressure, he	eat, densit	y, specifi	c vol	ume						
53.		efrigerator is o	perated v	with the d	oor o	pen in a	n isolate	d room,	then t	the temp	perature	
	A)	Decreases			B)	Rema	ins const	ant				
					D)						1t	

46.

54.		change in entro	1.0		-			-			
	A)	Positive	B)	Zero	C)	Negative	D)	Unity			
55.		stem is worki xJ, then the una			d 400 K	If the heat	t supplied	to the syste	em is		
	A)	150 kJ	B) 125		C)	75 kJ	D)	100 kJ			
56.	A sta	ite of a pure su	bstance at	which a pha	se chang	ge ends or be	gins is call	led			
	A)	Critical stat	e	B)	Satu	rated state					
	C)	Triple point		D)	Gibb	's state					
57.	In an	isothermal pro	ocess of a	system, its in	iternal e	nergy					
	A)	Always inci	eases	B)		ys decreases					
	C)	Is zero		D)	Rem	ains constant					
58.	A Ca	rnot cycle has	two isentr	opic and two							
	A)	isochoric		B)		ermal					
	C)	isobaric		D)	polyt	ropic					
59.		generative Rar	-								
	A)			vith the help							
	B)				-	n a turbine ar	nd is rehear	ted			
	C)			fter expansio							
	D)	The steam 1	s heated be	efore entering	g the tur	bine					
60.	In a psychrometric chart sensible heating or cooling is represented by										
	A)	Vertical line		B)		zontal line					
	C)	Inclined line	e	D)	Curv	ed lines					
61.	The Francis turbine is suited for										
	A)	High head a		- /	_	head and hig	•	_			
	C)	Low head a	nd low dis	charge D)	Med	ium head and	l medium (discharge			
62.		In Otto cycle heat addition is assumed to be at constant									
	A)	Pressure		B)	Volu						
	C)	Temperatur	e	D)	Enth	alpy					
63.		impulse turbin	_	_							
	A)	Pelton whee		B)		cis turbine					
	C)	Kaplan turb	ine	D)	Prop	eller turbine					
64.	The	erystal structur	_	na iron is							
	A)	Simple cubi	c B)	BCC	C)	FCC	D)	HCP			

65.	Incre	Increasing temperature has the following effect on stress-strain curves									
	A)	It raises ductility									
	B)	It lowers toughness									
	C)	It raises the yield stress									
	D) The sensitivity of strength to strain rate decreases										
66.	Non	ferrous alloys and stainless	steels are	heat treated by a process called							
	A)	Annealing	B)	Quenching							
	C)	Tempering	D)	Precipitation hardening							
67.	The	thermoplastics among the fo	ollowing is	3							
	A)	Acrylics	B)	Phenolics							
	C)	Polyester	D)	Polyamides							
68.	Whic	ch of the following metal ex	pands dur	ing solidification of casting?							
	A)	Aluminium	B)	Copper							
	C)	Gray cast iron	D)	Zinc							
69.	The	solidification time of a casti	-								
	A)			ly proportional to surface area							
	B)	Proportional to square of area	`volume a	nd inversely proportional to square of surface							
	C)	Proportional to square of	volume a	nd inversely proportional to surface area							
	D)	± ±		ely proportional to square of surface area							
70.	Riser in a mould should be located in such a way so that										
	A)	It is first to receive molten metal									
	B)	It is last to solidify									
	C)	It is first to solidify									
	D)	It is not to receive molter	n metal								
71.	Whic	Which casting method is limited to non ferrous metals?									
	A)	Sand casting	B)	Shell mould casting							
	C)	Plaster mould casting	D)	centrifugal casting							
72.		ls are used in casting moulds									
	A)	Achieve directional solid									
	B)	Reduce possibility of blo	w holes								
	C)										
	D)	Reduce the solidification	time								
73.		nesmann process is a		- w							
	A)	Casting process	B)	Rolling process							
	C)	Forging process	D)	Machining operation							

ng ming?
ning?
ming?
lding
welding
els
eels
eels
eels
eels
eels ee finish?
e

84.	The relation of cutting speed (V) to the tool life (T), as proposed by F.W.Taylor is									
	wher	$\mathbf{r} \in \mathbf{n}$ and \mathbf{c} are constants.								
	A)	$VT^n = c$	B)	$V = cT^n$						
	C)	$(VT)^n = c$	D)	$V^nT = c$						
85.	Whic	ch of the following machi	ning process	is basically the reverse of electroplating?						
	A)	Electrical discharge ma	achining							
	B)	Laser beam machining								
	C)	Electrochemical machi	ining							
	D)	Abrasive- jet machinin	g							
86.		A device which holds and locates a work piece during an inspection or for a manufacturing operation, but does not guide the tool, is called								
	A)	Jig	B)	Fixture						
	C)	Saddle	D)	Carriage						
	C)	Suddie	D)	Curruge						
87.	The i	formula for economic ord	er quantity d	loes not contain						
	A)	Order cost	B)	Carrying cost						
	C)	Cost of the item	D)	Annual demand						
88.	In PI	ERT, which of the distribu	ıtion is assur	med for the duration of the activities?						
	A)	Normal	B)	Beta						
	C)	Poisson	D)	Exponential						
89.	In a t	In a transportation problem with m rows and n columns, the problem becomes degenerate								
	when the number of allotted cells is less than									
	A)	m+n	B)	m						
	C)	m+n-2	D)	m+n-1						
90.	The 1	The type of layout suitable for group technology is								
	A)	Product layout	B)	Job-shop layout						
	C)	Cellular layout	D)	Fixed layout						
91.	The	simplex method for solvir	ng Linear Pro	ogramming Problem, was developed by						
	A)	Scarf H	B)	Dantzig G B						
	C)	Jackson J R	D)	Miller D W						
92.	In qu	neuing theory, the ratio of	mean arriva	l rate to the mean service rate is called						
	A)	Work factor	B)	Service factor						
	C)	Utilization factor	D)	Time factor						
	,		,							

93.	In 2	norgan zara gum gamag tha s	roluo of	the game is					
93.		person zero-sum games, the v Zero							
	A)		B)	1 2					
	C)	-1	D)	2					
94.	KAN	IBAN is a							
	A)	JIT concept	B)	FMS concept					
	C)	MRP concept	D)	GT concept					
95.	Rout	ing and scheduling are integra	ıl part of	f					
	A)	Work study	B)	Quality control					
	C)	Product planning	D)	Job analysis					
96.	H7/g	6 is a							
	A)	Transition fit	B)	Sliding fit					
	C)	Interference fit	D)	Force fit					
97.	The degree to which an instrument gives repeated measurements of the same standard is called								
	A)	Precision	B)	Accuracy					
	C)	Sensitivity	D)	Resolution					
98.	The type of gage used to measure holes is								
	A)	Snap gages	B)	Plug gages					
	C)	Ring gages	D)	Strain gages					
99.	The s	symbol used to represent flatn	ess is						
	A)	-	B)	_					
	C)	//	Ď)						
100.	The i	instrument used to accurately	measure	small angular deviations on a flat surface is					
	A)	Staright edge	B)	Dial indicator					
	C)	Auto collimator	D)	Optical flat					
	-,		- ,	- T					
