A

प्रशादि. 31 क्राइस्ट 2014 प्रश्नपुस्तिका क्रमांक

CODE: CO5

BOOKLET NO.

केंद्राची संकेताक्षरे

प्रश्नपुस्तिका चाळणी परीक्षा

एकूण प्रश्न : 100

एकूण गुण: 200

शेवटचा अंक

वेळ: 1 ( एक ) तास

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमूद करावा**.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्यायापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

## ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

पर्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

कच्चा कामासाठी जागा / SPACE FOR ROUGH WORK

- 1. Change in entropy for isothermal process carried on a gas whose specific volume changes from  $V_1$  to  $V_2$  and pressure changes from  $P_1$  to  $P_2$  is given by :
  - (1)  $\Delta S = -R \log_e \frac{V_2}{V_1}$
- (2)  $\Delta S = R \log_e \frac{P_2}{P_1}$
- (3)  $\Delta S = -R \log_e \frac{P_2}{P_1}$
- (4)  $\Delta S = -R \log_e \frac{V_2}{V_1} + R \log_e \frac{P_2}{P_1}$
- 2. Following is the outcome of first and second laws of thermodynamics.
  - (1)  $Q = W + \Delta u$

- (2) T.ds = dh + v.dp
- (3) T.ds = dh v.dp
- (4) Q = m.cp.dT
- **3.** Availability function is expressed as:
  - (1)  $\phi = U + P_o V T_o S$
- (2)  $\phi = dU + P_o V T_o dS$
- (3)  $\phi = U + P_o dV + T_o dS$
- (4)  $\phi = U + P_o V + T_o S$
- 4. Characteristic gas constant of any perfect gas :
  - (1) increases with increase in temperature
  - (2) increases with increase in pressure
  - (3) is a function of pressure and temperature
  - (4) is a constant
- 5. Indicate which one of the following statements is **true** in case of two shafts connected in series:
  - (1) Shear stress in each shaft is the same
  - (2) Torque in each shaft is the same
  - (3) Angle of twist in each shaft is the same
  - (4) None of the above

|--|

4

A

| 6.  | Max  | imum shear stress theory is also l                                  | knowr   | n as                                                                                 |
|-----|------|---------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------|
|     | (1)  | Rankine's theory                                                    | (2)     | St. Venant's theory                                                                  |
|     | (3)  | Guest's and Tresca's theory                                         | (4)     | Mises and Henkey's theory                                                            |
| 7.  | The  | variation of shear stress in a circu                                | lar sha | aft subjected to tension is :                                                        |
|     | (1)  | linear (2) parabolic                                                |         | (3) hyperbolic (4) uniform                                                           |
| 8.  | The  | point of contraflexture lies where                                  | !       | ·                                                                                    |
|     | (1)  | shear force changes sign                                            | (2)     | bending moment is zero or changes sign                                               |
|     | (3)  | shear force is zero                                                 | (4)     | bending moment is maximum                                                            |
| 9.  | The  | total strain energy stored in a bod                                 | y is k  | nown as :                                                                            |
|     | (1)  | Impact energy                                                       | (2)     | Proof resilience                                                                     |
|     | (3)  | Resilience                                                          | (4)     | Modulus of resilience                                                                |
| 10. |      | simum deflection of a simply suppo                                  | orted 1 | peam with a total uniformly distributed load (w)                                     |
|     | (1)  | $\frac{w l^3}{384 \text{ EI}}$ (2) $\frac{5 w l^3}{384 \text{ EI}}$ |         | (3) $\frac{\text{w }l^3}{48 \text{ EI}}$ (4) $\frac{5 \text{ w }l^3}{48 \text{ EI}}$ |
| 11. | In a | transversally loaded beam the ma                                    | ıximu   | m compressive stress occurs at the                                                   |
|     | (1)  | top edge                                                            | (2)     | bottom edge                                                                          |
|     | (3)  | neutral axis                                                        | (4)     | none of the above                                                                    |
|     |      |                                                                     |         |                                                                                      |

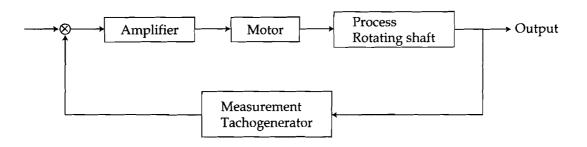
| 12.        |      | en a rectangu<br>ar stress to the |             |                                               |            | jected | to a shearing   | force, the | ratio  | of maximum   |
|------------|------|-----------------------------------|-------------|-----------------------------------------------|------------|--------|-----------------|------------|--------|--------------|
|            | (1)  | 2.0                               | (2)         | 1.75                                          |            | (3)    | 1.5             | (4)        | 1.25   |              |
| 13.        | The  | curie temper                      | ature for i | nterstitia                                    | l solid so | lution | of carbon in    | low temp   | eratur | e BCC-α iron |
|            | (1)  | 910°C                             | (2)         | 768°C                                         |            | (3)    | 1400°C          | (4)        | 727°   | С            |
| 14.        | Gra  | phite in the fo                   | orm of flak | es is obs                                     | erved in   | :      |                 |            | -      |              |
|            | (1)  | spheroidal                        | graphite c  | ast iron                                      | (2)        | gray   | cast iron       |            |        |              |
|            | (3)  | white heart                       | malleable   | ?                                             | (4)        | blac   | k heart malle   | able       |        |              |
| <b>15.</b> | The  | fatigue streng                    | gth of mile | d steel is                                    | :          |        |                 |            |        |              |
|            | (1)  | Equal to its                      | tensile str | ength                                         | (2)        | Equ    | al to its yield | strength   |        |              |
|            | (3)  | More than i                       | ts tensile  | strength                                      | (4)        | Low    | er than its yi  | eld streng | th     |              |
| 16.        | Nitr | iding is a pro                    | cess used   | to :                                          |            |        |                 |            |        |              |
|            | (1)  | reduce the                        | wear resis  | tance                                         | (2)        | incre  | ease the wear   | resistanc  | e      |              |
|            | (3)  | increase the                      | surface h   | nardness                                      | (4)        | none   | e of the above  | <b>:</b>   |        |              |
| <br>17.    | The  | percentage c                      | of chromiu  | ım in sta                                     | ainless st | eel us | sed for cutler  | y is usua  | lly in | the range of |
|            | (1)  | 0.5% to 1.1                       | % (2)       | 1.2% to                                       | 2.7%       | (3)    | 10% to 20%      | (4)        | 20%    | to 30%       |
| —-<br>18.  | Aus  | tenite F.C.C                      | structure i | s found                                       | at         |        | temperature.    |            |        |              |
|            | (1)  | 1333°F to 2                       | 066°F       |                                               | (2)        | 1670   | °F to 2500°F    |            |        |              |
|            | (3)  | 1333°F to 2                       | 702°F       |                                               | (4)        | 2066   | °F to 2802°F    |            |        |              |
| SPA        | CE F | OR ROUGH                          | WORK        | . <u>.                                   </u> |            |        |                 | <u> </u>   |        |              |

SPACE FOR ROUGH WORK

(3)

(4)

one end fixed and the other end hinged


one end fixed and the other end free

| Δ |
|---|
|   |

| 4 X |     | •                                    |            |                                     | •        |                                   |         | -                                 |
|-----|-----|--------------------------------------|------------|-------------------------------------|----------|-----------------------------------|---------|-----------------------------------|
| 24. |     | en a shaft is su<br>ivalent twisting | •          | •                                   | oment    | (M) and a twis                    | ting mo | oment (T), then the               |
|     | (1) | M + T                                | (2)        | $M^2 + T^2$                         | (3)      | $\sqrt{M^2+T^2}$                  | (4)     | $\sqrt{M^2-T^2}$                  |
| 25. |     |                                      |            | ng a mass of 10<br>ural frequency o |          |                                   | of 4000 | N/m vibrates on a                 |
|     | (1) | 5 rad/sec                            | (2)        | 10 rad/sec                          | (3)      | 15 rad/sec                        | (4)     | 20 rad/sec                        |
| 26. |     |                                      |            | rings with stiffnont                |          | nd K <sub>2</sub> respectiv       | ely are | connected in series               |
|     | (1) | $\frac{K_1.K_2}{K_1+K_2}$            | (2)        | $\frac{K_1 - K_2}{K_1 + K_2}$       | (3)      | $\frac{K_1 + K_2}{K_1 \cdot K_2}$ | (4)     | $\frac{K_1 - K_2}{K_1 \cdot K_2}$ |
| 27. |     |                                      |            | ed for ROM tha                      |          |                                   |         | eir contents altered              |
|     | (1) | R.O.M.                               | (2)        | P.R.O.M.                            | (3)      | E.P.R.O.M.                        | (4)     | E.E.P.R.O.M.                      |
| 28. | CPU | J in microproce                      | essor is u | used to:                            |          |                                   |         |                                   |
|     | (1) | Handle com                           | municati   | on between mic                      | roproce  | essor and outsid                  | le worl | d                                 |
|     | (2) | To hold the                          | program    | instruction and                     | l data   |                                   |         |                                   |
|     | (3) | Recognise ar                         | ıd carry   | out program in                      | structio | ns                                |         |                                   |
|     | (4) | All of the abo                       | ove        |                                     |          |                                   |         |                                   |

- 29. Root of the characteristic equation of control system influence its:
  - Steady state response (1)
- Steady state and transient response (2)
- Transient response and stability (4) None of the above (3)

**30.** State the type of control system used below :



- (1) Open Loop Control System
- (2) Closed Loop Control System
- (3) Sequential Control System
- (4) None of the above

31. \_\_\_\_\_ is the length of the pitch circle diameter per tooth.

- (1) Addendum
- (2) Module
- (3) Backlash
- (4) Face width

**32.** The coriolis acceleration component can be estimated by using equation :

- (1) ων
- (2) 2 ων
- (3)  $3 \omega \nu$
- (4)  $4 \omega \nu$

33. In multiplate clutch the total no. of disks equals to:

- (1) number of pairs of contacting surfaces +1
- (2) number of pairs of contacting surfaces -1
- (3) number of pressure plates -1
- (4) number of pressure plates +1

**34.** The size of a cam depends upon :

- (1) Base circle
- (2) Pitch circle
- (3) Prime circle
- (4) Pitch curve

| 35. | Match | the | following | : |
|-----|-------|-----|-----------|---|
|     |       |     |           |   |

- (a) G 41
- (i) Absolute dimensioning
- (b) G 42
- (ii) Incremental dimensioning
- (c) G 90
- (iii) Cutter compensation left
- (d) G 91
- (iv) Cutter compensation right
- (a) (b) (c) (d)
- (1) (i) (ii) (iii) (iv)
- (2) (ii) (i) (iv) (iii)
- (3) (iii) (iv) (i) (ii)
- (4) (iv) (iii) (ii) (i)

## 36. The sintering temperature and time vary with the following factors:

- (a) Type of metal powder.
- (b) Compressive load used.
- (c) Strength requirements of finished parts.
- (d) None of the above

Which of the statements given below is/are correct?

(1) (a), (b) only

- (2) (b) and (c) only
- (3) (a), (b) and (c) only
- (4) (d) only

## 37. Which of the following expressions does not represent the speed of sound in medium?

- (1)  $\sqrt{\frac{K}{c}}$
- (2)  $\sqrt{\nu RT}$
- (3)  $\sqrt{K} \cdot \frac{F}{\rho}$
- (4)  $\sqrt{\frac{d\mathbf{r}}{d\mathbf{r}}}$

SPACE FOR ROUGH WORK

38. In a rotating fluid flow system

V = absolute velocity of a jet

 $V_r$  = relative velocity of the same jet with respect to its nozzle and

u = absolute velocity of the nozzle.

The relationship between these vectors is:

- $(1) V = V_r + u$
- (2)  $V = V_r u$  (3)  $V_r = V + u$
- The power transmitted through the pipe is maximum when head loss due to friction in pipe 39. is equal to \_

  - (1)  $\frac{1}{2}^{rd}$  of the total supply head (2)  $\frac{1}{4}^{th}$  of the total supply head
  - (3)  $\frac{1}{5}^{th}$  of the total supply head (4)  $\frac{1}{8}^{th}$  of the total supply head
- In two dimensional (x, y) flow acceleration component in the X- direction is given by  $a_x =$ 40.
  - (1)  $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial u}$
- (2)  $u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$
- (3)  $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$
- (4)  $u \frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} + u \frac{\partial v}{\partial y}$

where, u, v are the velocity components in x and y directions respectively and t is time.

- 41. If a vessel containing liquid moves downward with a constant acceleration, then:
  - the pressure throughout the liquid mass is atmospheric **(1)**
  - (2) the pressure in the liquid mass is greater than the hydrostatic pressure
  - (3)there will be vacuum in the liquid
  - (4)the pressure throughout the liquid mass is greater than atmospheric

| <b>42</b> . | If th | ne velocity u ir                   | n a turbu | lent bound                   | ary la  | yer v <i>a</i> | ries as $y^{1/7}$ , t        | he growt   | h of the bou  | ındary  |
|-------------|-------|------------------------------------|-----------|------------------------------|---------|----------------|------------------------------|------------|---------------|---------|
|             | laye  | er thickness $\frac{\delta}{\chi}$ | varies as | 3:                           |         |                |                              |            |               |         |
|             | (1)   | $\operatorname{Re} x^{-1/5}$       | (2)       | $\operatorname{Re} x^{-1/2}$ |         | (3)            | $\operatorname{Re} x^{-4/5}$ | (4)        | $Re x^{-1}$   |         |
|             | Whe   | ere Rex is the l                   | ocal Reyi | nold's num                   | ber.    | _              |                              |            | 4             |         |
| 43.         | In a  | xially loaded e                    | lastic me | mber stiffne                 | ess 'k' | is:            | ,                            |            |               |         |
|             | (1)   | Directly prop                      | ortional  | to Young's                   | modi    | ulus a         | nd inversely p               | roportio   | nal to area o | f cross |
|             | (2)   | Directly propertion                | portional | to membe                     | r leng  | th and         | d inversely pr               | oportion   | al to area of | f cross |
|             | (3)   | Directly prop                      | ortional  | to Young's                   | modu    | lus an         | d inversely pro              | portiona   | l to member   | length  |
|             | (4)   | Inversely pro                      | portiona  | l to member                  | lengt   | h and i        | nversely prop                | ortional t | o Young's mo  | odulus  |
| 44.         | Inst  | rument that m                      | easures p | oressure is g                | genera  | lly cla        | ssified as :                 |            |               |         |
|             | (1)   | Non - linear                       |           |                              | (2)     | Line           | ar                           |            |               |         |
|             | (3)   | Free of hyste                      | resis     |                              | (4)     | Non            | e of the above               |            |               |         |
| <b>45.</b>  |       | least count of                     |           |                              |         |                |                              |            |               | tching  |
|             | (1)   | 0.05 mm                            | (2)       | 0.01 mm                      |         | (3)            | 0.02 mm                      | (4)        | 0.001 mm      |         |
| 46.         | Slop  | oe of calibration                  | n curve i | ndicates its                 | :       |                |                              | _          |               |         |
|             | (1)   | Resolution                         | (2)       | Repeatabi                    | ility   | (3)            | Static sensiti               | vity (4)   | Hysterris     |         |
| SPA         | CE F  | OR ROUGH                           | WORK      |                              |         | _              |                              |            |               |         |
|             |       |                                    |           |                              |         |                |                              |            | 1             | P.T.O.  |

| Tr. II the critical ratio is less than one, then it maleures that | 47. | If the critical ratio is less that | an one, then it indicates that | , |
|-------------------------------------------------------------------|-----|------------------------------------|--------------------------------|---|
|-------------------------------------------------------------------|-----|------------------------------------|--------------------------------|---|

- (1) the job is already late
- (2) the job is on schedule
- (3) the job has some slack available to it
- (4) the top priority should not be given

# **48.** For the first setup in applying SMED to a particular machine, which time must be analysed first for that machine :

(1) lead time

- (2) manufacturing time
- (3) production time
- (4) setup time

# **49.** Around the rated (full load) speed, the slip of the induction motor is \_\_\_\_\_ and the torque - slip relationship is \_\_\_\_\_ in the region.

- (1) low, non-linear (2)
- high, linear
- (3) low, linear
- (4) high, non-linear

#### 50. Which of the following induction motors, has highest starting torque?

(1) Squirrel cage

- (2) Slip ring
- (3) Deep bar squirrel cage
- (4) Double bar squirrel cage

#### **51.** In stepper motor, step angle $\alpha$ is given by \_\_\_\_\_

where,  $\frac{M_s}{N_r} = \text{No. of stator phases}$ = No. of rotor teeth

$$(1) \qquad \alpha = \frac{360^{\circ}}{M_s N_r}$$

$$(2) \qquad \alpha = \frac{M_s N_r}{360^\circ}$$

(3) 
$$\alpha = \frac{M_s}{N_r} \times 360^{\circ}$$

(4) 
$$\alpha = \frac{N_r}{M_s} \times 360^{\circ}$$

| <b>52</b> . | In a                                                    | synchronous generator delivering lagging power factor load                                                                                   |  |  |  |  |  |  |  |  |
|-------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|             | (1)                                                     | the excitation emf leads terminal voltage by the power angle                                                                                 |  |  |  |  |  |  |  |  |
|             | (2)                                                     | (2) the excitation emf lags terminal voltage by the power angle                                                                              |  |  |  |  |  |  |  |  |
|             | (3)                                                     | the excitation voltage is in phase with the terminal voltage                                                                                 |  |  |  |  |  |  |  |  |
|             | (4)                                                     | none of these                                                                                                                                |  |  |  |  |  |  |  |  |
| 53.         | Whi                                                     | ich of the following statements related to a transformer are incorrect?                                                                      |  |  |  |  |  |  |  |  |
|             | (a) The maximum voltage regulation occurs at leading pf |                                                                                                                                              |  |  |  |  |  |  |  |  |
|             | (b)                                                     |                                                                                                                                              |  |  |  |  |  |  |  |  |
|             | (c)                                                     | (c) The voltage regulation at zero pf is always zero                                                                                         |  |  |  |  |  |  |  |  |
|             | (d)                                                     | (d) The voltage regulation can be negative at leading pf                                                                                     |  |  |  |  |  |  |  |  |
|             | Ans                                                     | Answer options:                                                                                                                              |  |  |  |  |  |  |  |  |
|             | (1)                                                     | (b) and (d) (2) (b) and (c) (3) (a) and (d) (4) (a) and (c)                                                                                  |  |  |  |  |  |  |  |  |
| 54.         |                                                         | o alternators are connected in parallel and the active power shared remains constant<br>reactive power shared by them can be controlled by : |  |  |  |  |  |  |  |  |
|             | (1)                                                     | Changing the mechanical power input only                                                                                                     |  |  |  |  |  |  |  |  |
|             | (2)                                                     | 2) Changing the excitation only                                                                                                              |  |  |  |  |  |  |  |  |
|             | (3)                                                     | Changing both excitation and mechanical power input                                                                                          |  |  |  |  |  |  |  |  |
|             | (4)                                                     | None of the above                                                                                                                            |  |  |  |  |  |  |  |  |
|             |                                                         |                                                                                                                                              |  |  |  |  |  |  |  |  |
| <u> </u>    | Why                                                     | y is ring feeder preferred over radial feeder in distribution system ?                                                                       |  |  |  |  |  |  |  |  |
| <u> </u>    | Why<br>(a)                                              | y is ring feeder preferred over radial feeder in distribution system ?  Voltage drop in the feeder is less                                   |  |  |  |  |  |  |  |  |
| 55.         | •                                                       | , , ,                                                                                                                                        |  |  |  |  |  |  |  |  |
| 55.         | (a)                                                     | Voltage drop in the feeder is less                                                                                                           |  |  |  |  |  |  |  |  |
| 55.         | (a)<br>(b)<br>(c)                                       | Voltage drop in the feeder is less  Power factor is higher                                                                                   |  |  |  |  |  |  |  |  |

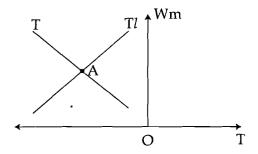
load factor should be low but diversity factor should be high

load factor should be high but diversity factor should be low

load factor and diversity factor should be high

SPACE FOR ROUGH WORK

(2)


(3)

(4)

| A   |      |                                                             | 15     | CO5                                         |
|-----|------|-------------------------------------------------------------|--------|---------------------------------------------|
| 61. | A tr | ansfer function may be defined on                           | ly for | a:                                          |
|     | (1)  | Linear and stationary system                                | •      |                                             |
|     | (2)  | Non-linear and stationary system                            | n      |                                             |
|     | (3)  | Linear and non-stationary system                            | n      |                                             |
|     | (4)  | Non-linear and non-stationary s                             | ystem  |                                             |
| 62. |      | D controller is used to compensate compensated system has : | a sys  | stem. Compared to the uncompensated system, |
|     | (1)  | A higher type number                                        | (2)    | Zero steady state error                     |
|     | (3)  | Improved transient response                                 | (4)    | Larger transient overshoot                  |
| 63. | A.C  | . Tachometer :                                              |        |                                             |
|     | (a)  | works on the principle of induct                            | ion ge | enerator                                    |
|     | (b)  | is brushless                                                |        |                                             |
|     | (c)  | reduces ripple                                              |        |                                             |
|     | (d)  | increases electro-magnetic noise                            |        | •                                           |
|     | Ans  | wer options :                                               |        |                                             |
|     | (1)  | only (a)                                                    | (2)    | (a) and (b)                                 |
|     | (3)  | (a), (b) and (c)                                            | (4)    | All four (a), (b), (c) and (d)              |
| 64. | As c | ompared to closed loop system, an                           | open   | loop system is :                            |
|     | (1)  | more stable as well as more accu                            | rate   |                                             |
|     | (2)  | less stable as well as less accurate                        | 2      |                                             |
|     | (3)  | more stable but less accurate                               |        |                                             |

(4) less stable but more accurate

- **65.** In which of the following modes the torque will be negative?
  - (1) Forward motoring and reverse motoring
  - (2) Forward regeneration and reverse regeneration
  - (3) Forward motoring and reverse regeneration
  - (4) Forward regeneration and reverse motoring
- **66.** Comment on the stability of the operating point A:



(1) Unstable

(2) Marginally stable

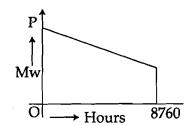
(3) Stable

- (4) Cannot find out
- 67. An eddy current clutch is identical in principle to an induction motor in which:
  - (1) stator is allowed to rotate
  - (2) rotor is allowed to rotate
  - (3) both stator and rotor are allowed to rotate
  - (4) none of the above
- **68.** Which of the following is **not** a standard class of motor duty?
  - (1) Intermittent periodic duty
  - (2) Intermittent duty with periodic speed changes
  - (3) Short time duty
  - (4) Intermittent duty, periodic duty with starting and braking

- 69. The prime mover to the ward Leonard system using a heavy intermittent load cannot be :
  - (1) Slip ring induction motor
- (2) Sychronous motor
- (3) Cage induction motor
- (4) D.C. shunt motor
- 70. A 220 V, 1500 rpm, 50 A, separately excited motors with armature resistance of 0.5  $\Omega$  is fed from a circulating current dual converter with ac voltage (line) = 165 V. The converter firing angles for braking operation at rated motor torque and 1000 rpm will be:
  - (1)  $\alpha_A = 61.9 \ \alpha_B = 118.1$
- (2)  $\alpha_A = 118.1 \ \alpha_B = 61.9$
- (3)  $\alpha_A = 61.9 \ \alpha_B = 61.9$
- (4)  $\alpha_A = 118.1 \ \alpha_B = 118.1$

- **71.** Diversity factor is:
  - (1) Always less than one
- (2) Always greater than one
- (3) Could be equal to one
- (4) None of these
- **72.** The cost of power generation can be reduced by :
  - (a) Selecting equipment of longer life and proper capacities
  - (b) Running the power station at high load factor
  - (c) Increasing the efficiency of the power plant
  - (d) Decreasing the down time of equipment

### **Answer options:**


(1) (a) only

(2) (b) only

(3) (a) and (c)

(4) (a), (b), (c), (d) all

**73.** The curve shown in the figure is:



- (1) Chronological load curve
- (2) Flow duration curve

(3) Mass curve

(4) Annual load duration curve

74. In availability based tariff mechanism, unscheduled interchange means :

- (a) Power supplied by a generator other than its scheduled generation
- (b) Exchange of power between two distribution utilities
- (c) Exchange of power between generation and distribution utility
- (d) Power drawn by distribution utility other than scheduled drawal

Answer options:

(1) (a) only

(2) (b) and (c) only

(3) (d) only

(4) (a) and (d)

75. In the electricity tariff mechanism, ABT stands for \_\_\_\_\_

- (1) Actual Base Tariff
- (2) Activity Based Tariff
- (3) Availability Based Tariff
- (4) Anticipation Based Tariff

**76.** Cost of power generation for a thermal station mainly depends on :

- (1) Employee cost
- (2) Maintenance cost

(3) Fuel cost

(4) Project cost

| ^ |  |
|---|--|
| ~ |  |

| 77.                | In a pump installation the local atmospheric pressure is 9.8 m of water, vapour pressure head is 0.4 m (abs.), height of the pump above sump water level is 5 m. For head loss in the suction side is 0.6 m, the NPSH is : |                                                                              |                    |                         |        |                                          |            |                        |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------|-------------------------|--------|------------------------------------------|------------|------------------------|--|--|
|                    | (1)                                                                                                                                                                                                                        | 3.8 m                                                                        | (2)                | 5.0 m                   | (3)    | 4.0 m                                    | (4)        | 15.8 m                 |  |  |
| 78.                | The                                                                                                                                                                                                                        | meter constant o                                                             | of an er           | nergy meter is ex       | presse | d in terms of revo                       | lutio      | ns per                 |  |  |
|                    | (1)                                                                                                                                                                                                                        | kW                                                                           | (2)                | kWh                     | (3)    | minute                                   | (4)        | second                 |  |  |
| 79.                |                                                                                                                                                                                                                            |                                                                              |                    |                         |        | nal resistance is 1<br>response to the s |            | . If it undergoes a    |  |  |
|                    | (1)                                                                                                                                                                                                                        | 240 ohm                                                                      | (2)                | $2 \times 10^{-5}$ ohm  | (3)    | $240 \times 10^{-5}$ ohm                 | (4)        | $1.2\times10^{-3}$ ohm |  |  |
| 80.                | Meg                                                                                                                                                                                                                        | gger is an instrur                                                           | nent u             | sed for measure         | nent o | of                                       | _          |                        |  |  |
|                    | (1)                                                                                                                                                                                                                        | low resistance                                                               |                    |                         | 4      |                                          |            |                        |  |  |
|                    | (2) medium resistance                                                                                                                                                                                                      |                                                                              |                    |                         |        |                                          |            |                        |  |  |
|                    | (3)                                                                                                                                                                                                                        | high vasistance                                                              | and i              | nsulation resista       | 100    |                                          |            |                        |  |  |
|                    | (3)                                                                                                                                                                                                                        | rugh resistance                                                              | uita 1             | itsulation resista      | ice    | •                                        |            |                        |  |  |
|                    | (4)                                                                                                                                                                                                                        | leakage curren                                                               |                    | nsulation resistal      | ice    |                                          |            |                        |  |  |
| <del></del><br>81. | (4)                                                                                                                                                                                                                        | leakage curren                                                               | t                  |                         |        | th to the pole pit                       | ch foi     | good efficiency is     |  |  |
| <del></del> -81.   | (4) In c                                                                                                                                                                                                                   | leakage curren                                                               | motor              |                         | e leng | th to the pole pit                       | ch for (4) | ,                      |  |  |
|                    | (4) In c take (1)                                                                                                                                                                                                          | leakage curren                                                               | motor (2)          | the ratio of cor        | e leng |                                          |            | ,                      |  |  |
| 81.<br>82.         | (4) In c take (1)                                                                                                                                                                                                          | leakage current<br>ase of induction<br>en as :                               | motor (2)          | the ratio of cor<br>1.5 | e leng |                                          |            | ,                      |  |  |
|                    | (4) In c take (1) "Pic (1)                                                                                                                                                                                                 | leakage current ase of induction en as:  1.0  ck-up" is another Strain gauge | motor (2) name (2) | the ratio of cor<br>1.5 | (3)    | 2.0 Accelerometer                        | (4)        | 5.0                    |  |  |

| 84. | The rotor of squirrel cage induction machine designed with a high value of rotor current density results in :         |                                            |        |                 |             |               |              |           |           |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|-----------------|-------------|---------------|--------------|-----------|-----------|--|--|
|     | (1)                                                                                                                   | Low starting to                            | que a  | and lower effi  | iciency     |               |              |           |           |  |  |
|     | (2)                                                                                                                   | Low starting to                            | que a  | and higher eff  | ficiency    |               |              |           |           |  |  |
|     | (3)                                                                                                                   | High starting to                           | rque   | and higher ef   | ficiency    |               |              |           |           |  |  |
|     | (4)                                                                                                                   | High starting to                           | rque   | and lower eff   | iciency     |               |              |           |           |  |  |
| 85. | Perc                                                                                                                  | entage leakage re                          | actan  | ce in a distrib | oution trai | nsformer has  | s to be:     |           |           |  |  |
|     | (1)                                                                                                                   | 3 to 4%                                    | (2)    | 4 to 5%         | (3)         | 1 to 2%       | (4)          | 6 to 13%  | ,<br>0    |  |  |
| 86. | The heat dissipating capability of oil immersed transformers of rating higher than 30 kVA is increased by providing : |                                            |        |                 |             |               |              |           |           |  |  |
|     | (1)                                                                                                                   | Fins, tubes, fans                          | and    | radiator tank   |             |               |              |           |           |  |  |
|     | (2)                                                                                                                   | Corrugations, fi                           | ns, tu | bes, radiator   | tank        |               |              |           |           |  |  |
|     | (3)                                                                                                                   | Auxiliary fins, w                          | vater  | tubes and co    | rrugations  | <b>;</b>      |              |           |           |  |  |
|     | (4)                                                                                                                   | Heat sinks, fins,                          | tubes  | s and corruga   | tions       |               |              |           |           |  |  |
| 87. | In a                                                                                                                  | synchronous gene                           | rator  | in order to eli | minate the  | e fifth harmo | onic the cho | rding ang | le should |  |  |
|     | (1)                                                                                                                   | 0°                                         | (2)    | 18°             | (3)         | <b>27°</b>    | (4)          | 36°       |           |  |  |
| 38. | For a particular value of $B_{\text{max}'}$ increasing the number of steps of the core of a transformer :             |                                            |        |                 |             |               |              |           |           |  |  |
|     | (1)                                                                                                                   | Reduces the copper used in the transformer |        |                 |             |               |              |           |           |  |  |
|     | (2)                                                                                                                   | Reduces the iror                           | usec   | l in the transf | ormer       |               |              |           |           |  |  |
|     | (3)                                                                                                                   | Reduces the iron                           | and    | increases the   | copper u    | sed in the tr | ansformer    |           |           |  |  |
|     | (4)                                                                                                                   | Both (1) and (2)                           |        |                 |             |               |              |           |           |  |  |
| SPA | CE FO                                                                                                                 | OR ROUGH WO                                | RK     |                 |             |               |              |           |           |  |  |

| 89. | Specific power (kWth/kg) of which reactor is the highest?                                                           |                                                                                      |       |                       |                  |         |            |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------|-----------------------|------------------|---------|------------|--|--|--|--|
|     | (1)                                                                                                                 | Pressurized water reactor                                                            | (2)   | Boil                  | ing water reacto | or      |            |  |  |  |  |
|     | (3)                                                                                                                 | Liquid metal fast breeder reacto                                                     | r (4) | Hig                   | h temperature g  | as cool | ed reactor |  |  |  |  |
| 90. | Which type of following nuclear reactors has highest thermal efficiency?                                            |                                                                                      |       |                       |                  |         |            |  |  |  |  |
|     | (1) Pressurized water reactor                                                                                       |                                                                                      |       | Boiling water reactor |                  |         |            |  |  |  |  |
|     | (3)                                                                                                                 | Sodium graphite reactor                                                              | (4)   | Gas cooled reactor    |                  |         |            |  |  |  |  |
| 91. | Inte                                                                                                                | Intercooling in gas turbines :                                                       |       |                       |                  |         |            |  |  |  |  |
|     | (1)                                                                                                                 | ) decreases net output but increases thermal efficiency                              |       |                       |                  |         |            |  |  |  |  |
|     | (2)                                                                                                                 | increases net output but decreases thermal efficiency                                |       |                       |                  |         |            |  |  |  |  |
|     | (3)                                                                                                                 | decreases both net output and thermal efficiency                                     |       |                       |                  |         |            |  |  |  |  |
|     | (4)                                                                                                                 | (4) increases both net output and thermal efficiency                                 |       |                       |                  |         |            |  |  |  |  |
| 92. | Preł                                                                                                                | Preheating of inlet water of a boiler by exhaust gas in steam plant is done in :     |       |                       |                  |         |            |  |  |  |  |
|     | (1)                                                                                                                 | Super heater (2) Economis                                                            | ser   | (3)                   | Damper           | (4)     | Steam trap |  |  |  |  |
| 93. | Which of the following helps in stabilizing the velocity and pressure in the penstock in hydroelectric power plant? |                                                                                      |       |                       |                  |         |            |  |  |  |  |
|     | (1)                                                                                                                 | Draft tube (2) Forebay                                                               |       | (3)                   | Surge tank       | (4)     | Tail race  |  |  |  |  |
| 94. | Whe                                                                                                                 | When a nuclear reactor is operating at constant power the multiplication factor is : |       |                       |                  |         |            |  |  |  |  |
|     | (1)                                                                                                                 | less than unity                                                                      | (2)   | grea                  | ater than unity  |         |            |  |  |  |  |
|     | (3)                                                                                                                 | equal to unity                                                                       | (4)   | non                   | e of the above   |         |            |  |  |  |  |
| SPA | CE F                                                                                                                | OR ROUGH WORK                                                                        |       |                       |                  |         |            |  |  |  |  |

| SPA                                                                                                                                                                     | CE F | OR ROUGH WORK                                                                                                                                         |       |                      |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|--|--|--|--|--|--|
|                                                                                                                                                                         | (3)  | Doubly fed induction generator                                                                                                                        | (4)   | Any one of the above |  |  |  |  |  |  |
|                                                                                                                                                                         | (1)  | Synchronous generator                                                                                                                                 | (2)   | Induction generator  |  |  |  |  |  |  |
| 98.                                                                                                                                                                     | Whi  | Which type is the wind electric generator?                                                                                                            |       |                      |  |  |  |  |  |  |
|                                                                                                                                                                         | (3)  | Thermometer                                                                                                                                           | (4)   | Lux meter            |  |  |  |  |  |  |
|                                                                                                                                                                         | (1)  | Pyroheliometer                                                                                                                                        | (2)   | Thermoheliometer     |  |  |  |  |  |  |
| 97.                                                                                                                                                                     | Whi  | Which one is the solar radiation measuring instrument ?                                                                                               |       |                      |  |  |  |  |  |  |
|                                                                                                                                                                         | (3)  | wind speed                                                                                                                                            | (4)   | atmospheric pressure |  |  |  |  |  |  |
|                                                                                                                                                                         | (1)  | drag                                                                                                                                                  | (2)   | lift                 |  |  |  |  |  |  |
| 96.                                                                                                                                                                     | The  | The rotor blades on a horizontal axis wind turbine rotate because of :                                                                                |       |                      |  |  |  |  |  |  |
|                                                                                                                                                                         | (4)  | All four statements are false                                                                                                                         |       |                      |  |  |  |  |  |  |
| •                                                                                                                                                                       | (3)  | (a), (b) and (d) are true but (c) is false                                                                                                            |       |                      |  |  |  |  |  |  |
|                                                                                                                                                                         | (2)  | (a) and (b) are true but (c) and (d) are false                                                                                                        |       |                      |  |  |  |  |  |  |
|                                                                                                                                                                         | (1)  | All four statements are true                                                                                                                          |       |                      |  |  |  |  |  |  |
|                                                                                                                                                                         | In a | In above                                                                                                                                              |       |                      |  |  |  |  |  |  |
|                                                                                                                                                                         | (d)  | 'Si' based solar PV cells are thicker than that of 'CdTe' based solar PV cell                                                                         |       |                      |  |  |  |  |  |  |
|                                                                                                                                                                         | (c)  | Direct band gap semiconductors require both photon and phonon particles where as indirect band gap semiconductor requires only photons for excitation |       |                      |  |  |  |  |  |  |
|                                                                                                                                                                         | (b)  | 'CdTe' is a direct band gap semiconductor                                                                                                             |       |                      |  |  |  |  |  |  |
|                                                                                                                                                                         | (a)  | 'Si' is an indirect band gap semi                                                                                                                     | condu | actor                |  |  |  |  |  |  |
| <b>95.</b> The solar photovoltaic cell is prepared using semiconductor materials. Based o used technology for solar cell manufacturing, consider following statements : |      |                                                                                                                                                       |       |                      |  |  |  |  |  |  |

- $\bf 99.$  In solar system, concentrator is the optical system that :
  - (1) absorbs beam radiation into the receiver
  - (2) converts beam energy into heat energy
  - (3) directs beam radiation onto the receiver
  - (4) reflects beam radiation away from the receiver
- 100. The optimum rotational frequency of a turbine in a particular wind speed decreases with :
  - (1) decrease in radius of turbine
- (2) increase in height of turbine
- (3) increase in radius of turbine
- (4) decrease in circumference of turbine blade

- o 0 o -

# सूचना — (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यितिरिक्त उत्तरपित्रकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

|                | <br>नमुना प्रश्न                                                                                                                                                                                                                                                                                         | _   |  |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|                | e correct word to fill in the blank :                                                                                                                                                                                                                                                                    |     |  |  |  |  |  |
| Q. No. 201.    | I congratulate you your grand success.                                                                                                                                                                                                                                                                   |     |  |  |  |  |  |
|                | (1) for (2) at (3) on (4) about                                                                                                                                                                                                                                                                          |     |  |  |  |  |  |
|                | ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रम<br>प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''③'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.                                                                                             | ाणे |  |  |  |  |  |
| प्र. क्र. 201. | ① ② ● ④                                                                                                                                                                                                                                                                                                  |     |  |  |  |  |  |
|                | अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे कॉल्योन वापस्त्र हो प्रेटिस्क वा शाईचे प्रेट वापस्त्र हो |     |  |  |  |  |  |

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK