Sl.	No.	:
-----	-----	---

DETE 2012

		_	_		
Register Number	'				
wumber					

2012 TEXTILE ENGINEERING (Degree Standard)

Time Allowed: 3 Hours]

[Maximum Marks : 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open it at the commencement of the examination. As soon as the signal is received you should tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- 2. This Question Booklet contains 200 questions.
- 3. Answer all questions.

- 4. All questions carry equal marks.
- 5. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 6. An Answer Sheet will be supplied to you separately by the Invigilator to mark the answers. You must write your Name, Register No., Question Booklet Sl. No. and other particulars with Blue or Black ink Ball point pen on side 2 of the Answer Sheet provided, failing which your Answer Sheet will not be evaluated.
- 7. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, your Answer Sheet will not be evaluated.
- 8. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case, you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 9. In the Answer Sheet there are four brackets [A] [B] [C] and [D] against each question. To answer the questions you are to mark with Ball point pen ONLY ONE bracket of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong e.g. If for any item, [B] is the correct answer, you have to mark as follows:

[A] [C] [D]

- 10. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 11. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 12. Do not tick-mark or mark the answers in the Question booklet.
- 13. The last sheet of the Question Booklet can be used for Rough Work.

SEAL

1.	Natural polymer based re	genera	tea nore	
	(A) Polystyrene		(B)	Polyamide
	(C) Terylene		(B)	Alginate
2.	Introduction of crimp inc	reases	in s	ynthetic fibres.
	(A) Strength		(B)	Cohesion .
	(C) Flexibility		(D)	Porosity
3.	Monomers required for th	ie prod	luction of PET	
	(A) Ethylene Glycol &	Terapt	hatic Acid	
	(B) Hexamethylene Dia	mine a	& Ethylene Gl	ycol
	(C) Adipic Acid & Dim	ethyl [Terapthalate	
	(D) Caprolactum & Adi	pic Ac	eid	
4.	Hydroxyl substituted fibr	e		
	(A) PAN		(B)	PVA
	(C) PTFE		(D)	PVC
5.	Crinkle type textured yar	ns are	produced by	
	(A) False twist texturing		(B)	Draw texturing
	(C) Stuffer-box texturing	ıg	(D)	Knit de-knit
6.	Heat of wetting (J/g) from	n zero	regain is maxi	mum for
••	(A) Cotton		(B)	Mercerised Cotton
	(C) Viscose Rayon		(D)	Wool
7.	At a constant chear rate o	r cheai	retress if visco	osity of fluid decreases as time increases, the
/·	fluid is named as	i sticai	30.033, 11 7130	osity of fluid decreases as time mercases, the
	(A) Thixotropic		(B)	Bingham
	(C) Dilatant		(D)	Rheopectic
8.	Dry-jet wet spinning is ex	ctensiv	ely used for	fiber.
	(A) LDPE		(B)	Aromatic Polyamide
	(C) HDPE		(D)	Carbon
9.	Which one of the following	ng is c	orrectly match	ed ?
,	P. Pin Texturing	1.	-	
	Q. Draw Texturing		Bulked Yarn	
	R. Friction Texturing		POY	
	S. Air-Jet Texturing			
	(A) P-4, Q-3, R-2, S-1			P-1, Q-2, R-4, S-3
	(E) P-4, Q-3, R-1, S-2			P-2, Q-3, R-4, S-1
			` '	

10.	Assertion-Reason Type:							
	Consider the following statemen	nts:						
	Assertion (A): Permanently he	at set fibers will exhibit an irreve	rsible thermal shrinkage.					
	Reason (R): During heat setting the imperfect crystallites tend to become perfect crystallites.							
	(A) Both (A) and (R) are true	and (R) is the correct explanation	of (A).					
	(B) Both (A) and (R) are true,	but (R) is not the correct explana	tion of (A).					
	(C) (A) is true, but (R) is false	: .	5 3					
	(D) (A) is false, but (R) is true	.	9 2					
11.	Main characteristics of rigid tex	tile composites	5					
	(i) Low density							
	(ii) High coefficient of therma	al expansion						
	(iii) High stiffness							
	(A) (i) and (ii) only	(B) (ii) and (iii) only	* *					
	(C) (i) & (iii) only	(D) (i), (ii) and (iii)	3					
12.	The construction of a laminate of	composite can be						
	(i) Fully isotropic	•	. 0					
	(ii) Quasi-isotropic							
	(iii) Anisotropic							
	(A) (i) and (ii) only	(B) (ii) and (iii) only						
	(C) (i) and (iii) only	(D) (i), (ii) and (iii)						
13.	Functions of matrix materials							
	(i) To bind the fibrous mater	ials together	4					
	(ii) To protect the fibres from	outside effects	4 2					
	(iii) To contribute to strength							
	(A) (i) and (ii) only	(B) (ii) and (iii) only						
	(C) (i) and (iii) only	(b) (i), (ii) and (iii)						
14.	Matrix used in composite for hi	gh-tech application	4.70					
	(A) Polyvinyl Alcohol	(B) Polypropylene	1.2					
	(C) Polyester	(D) Epoxy	6.3					
15.	Common fibres used for manuf	•						
	(i) Graphite	(ii) Polyester						
	(iii) Fibre glass	/ms ///s * ////						
	(A) (i) and (ii) only	(B) (ii) and (iii) only						
	(C) (i) and (iii) only	(D) (i), (ii) and (iii)						
DET	ርፑ 2012	4	1					

16.	Thermo-set matrix material use	d in composite	e is
	(A) Poly ethylene	(B)	PEEK
	(e) Vinyl ester	(D)	Poly propylene
17.	The driving force that transfer of	lye from solut	ion to fibre is
	(A) solubility	(B)	chemical potential
	(C) enthalpy	(D)	entropy
18.	The fibre with density less than	1 g/cm ³ is	
	(A) Poly propylene	(B)	Nylon 6
	(C) Nylon 6,6	(D)	Nylon 6,10
19.	Which one of the following is c	orrectly match	ned ?
	P. Thermo-set resin	1. Closed n	nould process
	Q. Compression moulding	2. Open mo	ould process
	R. Filament winding	 Good con reinforce 	ntrol of ement orientation
	S. Vacuum bag moulding	4. Expoxy	
	(A) P-3, Q-1, R-2, S-4	(B)	P-2, Q-4, R-3, S-1
	(C) P-1, Q-4, R-2, S-3	(D)	P-2, Q-4, R-3, S-1 P-4, Q-1, R-2, S-3
20.	Identify the non-woven fabri observed under stereo microsco		techniques based on the typical features
	Feature: The fiber layer is bour	nd with fiber s	trand.
	(A) Bonding with adhesives	(B)	Bonding with bi-component fibers
	(C) Web stitching technique	(D)	Needling technique
21.	Assertion-Reason Type:		
	Consider the following statement	nt:	
	Assertion (A): Finisher draw controlling cou		dered as the important intermediate stage for yarn.
	Reason (R) : Very high draft	t is given.	4
	(A) Both (A) and (R) are true	and (R) is the	correct explanation of (A).
	(B) Both (A) and (R) are true,	but (R) is not	the correct explanation of (A).
	(A) is true, but (R) is false	e.	
	(D) (A) is false, but (R) is true	€.	

22.	The	The objective of pre comber draw frame is								
	(A)	(A) to get even number of passages in comber preparatory.								
	(B)	(B) for parallelization of fibres during comber preparatory.								
	(C)	to feed fibres with trai	ling	hooks to	com	ber.				
	(D)	for both (A) and (B)								
23.	If the	e actual draft in a card i	is 90), and the	e mec	hanical draft is 85, the waste % ex	tracted by			
	the c	ard will be			/	•				
	(A)	5.0%			(B)	5.5% 3.0%				
	(C)	6.0%			(D)	3.0%				
24.	Whi	ch one of the following	is c	orrectly i	natch	ed?				
27,		High drafting force		_						
		Periodic variation			•					
	-	Drafting wave				5.				
		Roller slip				ler				
		P-2, Q-3, R-4, S-1		2000		P-4, Q-1, R-3, S-2				
	(6)	P-3, Q-4, R-2, S-1				P-1, Q-3, R-2, S-4				
	X	, (,,, -, -			(-)	, Ç .,,				
25.	The	main purpose of mixing	gal	arge num	ber o	f bales is to				
	(A)	produce a stronger yar	rn	·	(B)	get consistent yarn quality				
	(C)	reduce waste		-	(Ď)	improve cleaning efficiency				
						•				
26.			_			ming machines kept at initial stage	es of blow			
	1	n line for processing 5%	6 tra	sh cotton						
	(A)	Axioflow cleaner			(B)	ERM cleaner				
	(C)	Krishner Beater			(D)	Hopper feeder				
27.	Dete	ermine the cleaning eff	icie	ncv of b	low r	oom line consisting of three mac	hines with			
		vidual cleaning efficience		-		,				
	(A)	$(0.3 \times 0.35 \times 0.3) \times 10^{-1}$	00		(B)	$[0.7 \times 0.65 \times 0.7] \times 100$				
						$[1 - (0.3 \times 0.35 \times 0.3)] \times 100$				
28.	In ca	arding machine, carding	act	ion takes		CANAL TO THE PERSON NAMED IN COLUMN				
	(A)	Licker-in and cylinder	r		(B)	Feed roller and Licker-in				
	(C)	Cylinder and Flats			(D)	Doffer and stripping roller				
29.	Atte	nuation refers to								
4).		Reduction in linear de	ensif	·v	(B)	Reduction in evenness	W 20			
	(C)	Increase in linear dens		- 5	(D)	Increase in evenness				
DE'	` '		,		6					
DE:	TE 20	12			6					

30.	The total draft given in the	comber preparator	y is
	(A) 4 to 6	(B)	7 to 9
	(C) 10 to 12	(D)	13 to 15
31.	Match the machine compon	nent with their prin	nary functions.
	P. Pressure bar	1. Cleaning Car	rd Web
	Q. Crushing roller	2. Removing T	rash
	R. Mote knife	3. Improving E	venness
	S. Auto leveller	4. Controlling s	short fibers
	(A) P-4, Q-1, R-2, S-3	(B)	P-2, Q-1, R-3, S-4
	(C) P-2, Q-1, R-4, S-3	(D)	P-3, Q-2, R-3, S-1
32.	A comber lap has a linear d linear density of web delive		a. If 20% noil is extracted, what would be the ead?
	(A) 40 K tex		48 K tex
	(C) 50 K tex	(D)	54 K tex
33.	Twist multiplier is a better length, because	r indicator of twis	t characteristics of yarn, than turns per unit
	(A) TM is directly propor	tional to the tange	nt of twist angle.
	(B) TM describes level of	f twist in yarn irres	spective of linear density.
	(e) TM is related to both	(A) and (B).	
	(D) TM is not related to b	ooth the above char	racters.
34.	The draft between cylinder	and doffer in a car	ding machine is
	(A) less than one	(B)	more than one
	(C) 100	(D)	10
35.	hooks are prefera	ably fed for combination	ng.
	(A) Trailing	(B)	Leading
	(C) Double sided	(D)	Trailing and leading
36.	Match the following:		
	Set – I	Set – II	
	a. Bottom apron	i. Cradle	
	b. Traverse motion	ii. Avoid chann	eling
	 c. Anti wedge ring 	iii. Nose bar	
	d. ABC ring	iv. Elliptical tra	
		v. Balloon cont	
	(A) a-ii, b-iii, c-iv, d-v	(B)	a-i, b-v, c-ii, d-iii
	(C) a-iii, b-ii, c-iv, d-v	(D)	a-v, b-ii, c-iii, d-iv
		7	DETE 2012

37.	Plyin	ig of single yarns results in		,
	(A)	reduction in tenacity	(B)	reduction in hairiness
	(C)	reduction in lustre	(D)	reduction in regularity
38.	Princ	ciple of SIRO spinning		
	(A)	Lubricating the fibres at drafting	zone	
	(B)	Using false twister just above the	lappet	eye
	(0)	Drafting two rovings in a single them into a single yarn.	drafting	g position at some distance apart and twisting
	(D)	Introducing a filament into the ya	arn at th	ne front roller.
39.		o ply yarn count is 18 Ne and th ount of single yarn?	e contr	action due to doubling is 10%, what will be
	(A)	18 Ne	(B)	36 Ne
	(e)	40 Ne	(D)	33 Ne
40.	The	overhang of front top roller	of	the spinning triangle.
	(A)	widens the width	(B)	increases the height
	(e)	shortens the height	(D)	reduces the width
41.	Whi	ch of the following combination st	rongly	influence the balloon tension?
	(i)	Bobbin diameter	(ii)	Balloon height
	(iii)	Spinning triangle	(iv)	Traveller speed
	(A)	(i), (iii)	(B)	(ii), (iii)
	(e)	(ii), (iv)	(D)	(iii), (iv)
42.	In ri	ng spinning, the traveller rpm is		
	(A)	equal to spindle rpm	(B)	higher than spindle rpm
	(e)	lower than spindle rpm	(D)	no relation at all
43.		sider the following statements v	vith ref	ference to compact spinning vis-à-vis ring
	P.	The size of the spinning triangle	is smal	ler.
	Q.	The yarn hairiness is lower.		
	R.	The draft is higher.		•
	S.	The imperfections is higher.		
	The	correct set of statement is		
	(A)	P, Q	(B)	Q, R
	(C)	R, S	(D)	P, S

DETE 2012

Ó

44.	Which one of the following is co	rrectl	ly match	ed?				
	P. Air-jet spun yarn	1.	Highes	t bending rigidity				
	Q. Rotor spun yarn	2.	Strong	est				
	R. Friction spun yarn (Dref-3)	3.	Core-s	heath				
	S. Ring spun yarn	4.	Very g	ood evenness				
	(A) P-3, Q-2, R-4, S-1		(B)	P-4, Q-2, R-1, S-3				
	(C) P-1, Q-4, R-3, S-2		(D)	P-2, Q-4, R-1, S-3				
45.	Sewing thread require final finish	ning a	as					
	(i) a protective coating against	t abra	ision.					
	(ii) the appearance characterist	ics d	esired in	final seam.				
	(iii) the frictional characteristics	s requ	uired for	satisfactory sewing.				
	(iv) protection against heat gene	erate	_	_				
	(A) (i), (iii) are only correct.		(B)	(ii), (iii) are only correct.				
	(C) (iii), (iv) are only correct.		(D)	(iv) all statements are correct.				
46.	Wrapper fibre percentage in rotor	r yarı	n depend	ls on				
	(A) design and speed of openin	g rol	ler					
	(B) length of the binding zone							
	(C) ratio of fibre length to the r	otor	circumfe	erence				
	(D) both (B) and (C)							
47.	Which of the following new spi end spinning"?	innin	g systen	ns is not working on the principle of "open				
	(A) Air vortex spinning		CRI	Air jet spinning				
	(C) Friction spinning		(D)	Rotor spinning				
	(c) Triction spinning		(D)	Rotor spitting				
48.	During rotor spinning the twist le			•				
				Fibre deposition in the rotor groove				
	(C) Yarn arm inside the rotor		(D)	Yarn outside the navel				
49.	Choose the "True" statements:							
	(i) The rotor speed can be increased with increase in rotor diameter.							
	(ii) Rotor spun yarn is relativel	ly eve	ener thar	its equivalent ring spun yarn.				
	(iii) Rotor spun yarns are relative	vely v	weaker t	han the corresponding ring spun yarns.				
	(A) (i) and (ii) only		(B)	(i) and (iii) only				
	(e) (ii) and (iii) only		(D)	(i), (ii) and (iii)				
50.	Presser bar is used in	nach	ine to co	ontrol floating fibres in the drafting zone.				
	(A) Ring frame		(B)	Speed frame				
	(C) Draw frame		(D)	Card				

DETE 2012

51.	51. Assertion (A): Rotor Spun Yarn has three part structure – density packed one in the colloosely packed fibers twisted around the core and wrapper fibers outside								
	Rea	Reason (R) : Because fibers have some freedom of movement during twisting, the outer fiber tend to slip more than core fibers.							
	(A)	Both (A) and (R) are true and (R)							
	(B)	Both (A) and (R) are true, but (R							
	(C)	(A) is true, but (R) is false.	,						
	(D)	(A) is false, but (R) is true.							
52.			refere	nce to the properties of rotor spun yarn with					
	^	valent ring spun yarn:							
	Ρ.	Breaking strength is lower.							
	Q.	Snarling tendency is lower.							
	R.	Bending rigidity is higher.	11						
	S.	Uniformity is higher.							
	(A)		(B)	Q, R					
	(C)	P, Q, R, S	(D)	P, S					
53.		yarn manufacturing technologies a	errange	ed in ascending order with respect to twisting					
	The	correct set is							
	(A)	Ring, Friction, Rotor, Jet	(B)	Rotor, Ring, Jet, Friction					
	(2)	Ring, Rotor, Jet, Friction	(D)	Rotor, Friction, Ring, Jet					
54.	In de	ouble nozzle air-jet spinning syster	n						
	(A)	Both the nozzles rotates in clocky		rection.					
	(B)	Both the nozzles rotates in anticle							
	` '	•		cond nozzle rotates in anticlockwise.					
	(D)	Both nozzles do not rotate.		ond nobbie rotates in anticioex vise.					
55.	The	packing density of which yarn is lo	west?	,					
	(A)	Ring yarn	(B)	Compact yarn					
	(C)	Air-jet yarn	(D)	Friction spun yarn					
56.	War	ping breakage rate in a super speed	warpe	er of a modern mill is of the order of					
	(A)	10 breaks / million metres warped							
	(B)	l break / million metres warped							
	(C)	1 break / 400 end / 1000 metre							
	(D)	10 breaks / 400 end / 1000 metre							
DET	ΓE 20:		10	п					

The same of the sa

37.	Leng	gui or yarii iii a bu	псп	on a pinn of at	поша	ne room approximatery equals
	(A)	Reed width			(B)	3-4 times reed width
	(C)	6 times reed wic	lth	•	(D)	none of the above
58.	In be	eam warping, the	warp	oing tension is	highe	r for those ends coming from
	(A)	Front of the 'V'	cree	:1	(B)	Middle of the 'V' creel
	(C)	Back of the 'V'	cree	1	(D)	None of the above
59.	The	clearing efficienc	y tha	nt could be obt	ained	in an electronic clearer
	(A)	70 – 100%			(B)	10 – 15%
	(C)	30 – 40%			(D)	15 – 30%
60.	Role	of anti-kinking d	evic	e in winding		
	(A)	To eliminate sta	tic c	harge accumul	ation.	
	(B)	To eliminate bre	aka	ge at cone nose	€.	
	(e)	To eliminate sna	arls t	efore yarn cle	arer.	
	(D)	To eliminate ba	lloon	ing effect duri	ng wi	inding.
61.	The	primary preparato	rv n	rocess for form	ning v	woven and knitting fabrics is
	(A)	Cone winding	-5 F		(B)	Warping
	(C)	Quill winding			(D)	Cheese winding
(3	TP1					
62.		velocity of shuttle	e in c	conventional lo	-	
	. ,	1 – 5 m/s		/	(B)	10 – 12 m/s
	(C)	1 – 5 m/min			(D)	10 – 12 m/min
63.	Mato	ch the following:				
	The	size ingredients c	an b	e divided into	four c	ategories.
	Ρ.	Adhesives	1.	Water		•
	Q.	Lubricant	2.	Mildew resist	tance	
	R.	Additives	3.	Waxes or ani	mal fa	ats
	S.	Solvent	4.	Starches		
	(A)	P-1, Q-2, R-3, S	-4		(B)	P-2, Q-3, R-4, S-1
	(C)	P-3, Q-4, R-1, S	-2	-	(D)	P-4, Q-3, R-2, S-1
64.	Stan	dard normal distri	buti	on will have m	iean a	nd variance equal to
	(A)				(B)	_
		0. 0.5				0.5. 0.5

65.	The	yarn passage in a winding	machine is as	follows :	
	(A)	unwinding zone, clearing	g zone, tensioni	ng zone, winding zor	ne
	(B)	unwinding zone, winding	g zone, clearing	zone, tensioning zor	ıe
	(C)	unwinding zone, tensioni	ing zone, windi	ing zone, clearing zor	nc
	(D)	unwinding zone, tensioni	ing and clearing	g zone, winding zone	
	-				
66.	Incre	ease in warp tension keeping	ng other variab	les same will cause	
	(A)	increase in crimp of both	warp and weft		
	(B)	, increase in warp crimp b	ut decrease in v	west crimp	
	(0)	decrease in warp crimp b	out increase in v	veft crimp	
	(D)	decrease in crimp of both	weft and warp		
67.	Sing	le left single cylinder jacq	uard has	type of speed.	
	(A)	centre closed	(B)	bottom closed	
	(C)	open	(D)	all the above	
68.	Adv	antages of high sky eccent	ricity ratio		
	(i)	It facilitates the passage	of the shuttle.		
	(ii)	It ensures more rigid loo	m frame.		
	(iii)	It tends to increase the ef	fectiveness of	beat up.	
	(A)	(i) and (ii) only	(B)	(ii) and (iii) only	
	(8)	(i) and (iii) only	(D)	(i), (ii) and (iii)	
				J	
69.		a given loom speed, the real is increased.	elative velocity	of the healds will _	if the period of
	(A)	decrease			
	(B)	increase			
	(C)	increase initially and then	n decrease		
	(D)	decrease initially and the	n increase		
70.	If the	e cross sectional area (A) o	of fibre is in cm	n ² and the fibre densi	ty (e) in g/cm³ the linear
		ity (m tex) will be			
	(A)	$A \times a \times 10^8$	(B)	$A \times e \times 10^{-8}$	
	(C)	$A \times e \times 10^6$	(D)	$A \times e \times 10^{-6}$	
71.	Whie	ch one of the following is a	not a warp knit	structure?	
	(A)	Marquisette	(B)	Shark skin	
	(C)	Tulle	(D)	Bourrelet	
DE:	TE 201	2	12		-
	_ ~ = 0 /	· -			

.

72.	will			nd its cross sectional area is 160 μm ² , what me density but with a cross sectional area of
	(A)	200 m tex	(B)	300 m tex
	(C)	100 m tex	(D)	50 m tex
73.	Le C	oste knit structure is produced b	y the con	nbination stitches.
	(A)	Knit and float	(B)	Tuck and float
	(C)	Knit, tuck and float	(B)	Knit and tuck
74.		ch one of the following fault is o	defined ur	nder short thick fault ?
-	(A)	D_4	(B)	G
	(C)	Н	(D)	I
75.	Which (A) (B) (C) (D)	ch one of the following technique Differential scanning calorime Infrared spectroscopy Density crystallinity Birefringence		ot measure crystallanity of fibres ?
76.	_	roduce knit structure with wide is preferred.	r, thicker	and slightly less extensible nature
	_	Single 'U' loop	(B)	Float loop
	(C)		(Đ)	Tuck loop
77.	Role	of take-up lever in sewing mac	hine	
	(i)	To supply extra thread during	loop form	nation.
	(ii)	To take-up extra thread after in	nterlockin	g with bobbin thread.
	(iii)	To maintain uniform yarn tens	sion.	
	(A)	(i) and (ii) only	(B)	(ii) and (iii) only
i.	(C)	(i) and (iii) only	(D)	(i), (ii) and (iii)
78.	frills	-	chine is∙c	apable of taking uniform gathered or pleated
	(A)	Hammer foot	(B)	Binder
	(C)	Ruffler	(D)	Notcher
79.	Spira	ality occurs in knitted fabric due	e to	
	(A)	Yarn unevenness	(B)	Residual torque in yarn
	(C)	Hairiness in yarn	(D)	Objectionable faults in yarn
			13	DETE 2012

80.	Lock knit fabric is basically a			
	(A) Warp knitted fabric		(B)	Weft knitted circular fabric
	(C) Weft knitted flat fabric		(D)	Braided fabric
81.	Match the following:			
	P. Dial	1.	Purl	
	Q. Long and short needles	2.	Rib	
	R. Double headed latch needle	3.	Lock	knit
	S. Bearded needle	4.	Interle	ock
	(A) P-2, Q-4, R-1, S-3		(B)	P-1, Q-3, R-2, S-4
	(C) P-3, Q-2, R-3, S-4		(D)	P-2, Q-3, R-1, S-4
82.	Spirality is not influenced by the fo	ollov	wing fa	ctors ?
	(A) Feeders		(B)	Twist
	(C) Needles		(D)	Cam angle
83.	In rib knitting machine the term de	elay	timing	denotes
	(A) Cylinder needle reaches first	at y	arn fee	d point.
	(B) Dial needle reaches first at y	am :	feed po	int.
	(C) Cylinder needle reaches first	at s	titch po	oint.
	(D) Dial needle reaches first at st	titch	point.	
84.	Different stitching in warp knitting	g is e	effected	by the movement of
	(A) needle bar		(B)	sinker bar
	(C) presser bar		(D)	guide bar
85.	The product of the following gives	the	areal d	ensity of the west knitted fabric:
	(i) Stitch density		(ii)	Stitch length
	(iii) Course per inch		(iv)	Yarn tex
	(A) (i), (ii), (iii)		(B)	(i), (ii), (iv)
	(C) (i), (ii)		(D)	(ii), (iii)
86.	Souring chemical preferred for cal	ciun	n hypoc	chlorite bleached material
	(A) Sulphurous acid	7.57	(B)	Sulphuric acid
	(C) Hydrochloric acid		(D)	Nitric acid
DET	ГЕ 2012		14	

87.	Choos	se "TRUE" statements f	rom	the followir	ng:				
	(i)	In scouring, proteins ar	e hy	drolysed into	insoluble products.				
	(ii)	Knitted fabrics are scou	ired	under mild p	processing conditions.				
	(iii)	Hydrogen peroxide is u	nive	rsal bleachir	ng agent.				
	(A)	(i) and (ii) only		(B)	(ii) and (iii) only				
	. ,	(i) and (iii) only		(D)	(i), (ii) and (iii)				
88.	Choos	se " <u>TRUE</u> " statements f	rom	the following	ng:				
	(i)	Vat dyes possess good	fastr	ess to washi	ng.				
	(ii)	Sulphur dyes are called	as i	ce dyes.					
	(iii)	When acid dyes are dis-	solv	ed in water i	t produces coloured negative ions.				
	(A)	(i) and (ii) only		(B)	(ii) and (iii) only				
	(C)	(i) and (iii) only		(D)	(i), (ii) and (iii)				
89.	Choos	se "TRUE" statements f	rom	the following	ng;				
	(i)								
		(ii) Fabric intended to be printed in polychromatic dyeing method must be highly absorbent.							
		In printing, lower limit printing.	of	viscosity is	determined by process conditions and sha	пр			
	(A)	(i) and (ii) only		(B)	(ii) and (iii) only				
	(C)	(i) and (iii) only		(D)	(i), (ii) and (iii)				
90.		is a process to eli	min	ate cockling,	, crow foot pattern and uneven shrinkage	in			
		en fabrics.		9					
	(A)	Crabbing		(B)	Calendering				
	(C)	Surging		(D)	Schreinering				
91.		rincipal objective of cot	ton	scouring is to	0				
	. ,	increase whiteness							
	1	decrease trash content							
	- '	increase absorbency							
	(D)	remove deeply embedd	ed p	roteneous m	atter				
92.	Match	the following:							
	P. C	Crease recovery angle	1.	Bleaching					
	Q. E	Bending length	2.	Wash-n-we	ar finish				
	R. V	Vetting time	3.	Scouring					
	S. V	Vhiteness	4.	Stiffening					
	(A)	P-4, Q-3, R-2, S-1		(B)	P-3, Q-4, R-1, S-2				
	(C)	P-2, Q-4, R-3, S-1		(D)	P-1, Q-4, R-3, S-2				

93.	The ar	nionic dyes are c	ommonly appl	ied on		
	(A)	Cotton		(B)	Polypropylene	
-	(C)	Polyester		(D)	Polyethylene	
94.	Asser		te weak dye-fi		action, vat dye shows extrem	iely good wash
	Reaso	on (R) : Water	insolubility of	f dye and	dye aggregation.	
	(A)	Both (A) and (R)) are true and (R) is the	correct explanation of (A).	
				(R) is not	the correct explanation of (A)).
	` '	(A) is true, but (•			
	(D)	(A) is false, but	(R) is true.			
95.	Acid o	lyes are held by	nvlon fiber by			
751		Vander Waal's f	•	(B)	Covalent bonds	
		Electrovalent bo		(D)	Co-ordinate bonds	
				. ,		
96.	If 2.5	coils laid on pac	kage of core w	inding m	achine per double traverse, th	ie traverse ratio
	is					
		5/2		(B)	7.5/3	
	(C)	5		(D)	7.5	
97.	In AF	IS Tester, for me	easuring nens		principle is used.	
<i>,</i> , ,		Capacitance	Lasuring neps _	(B)	Optical / Photoelectric	
	, ,	Interference		(D)	Inductance	
	` ′			3.		
98.	Match	the following:				
		Set – I		t ~ II		
		telometer	a. Surface k		abric	
		Pilling	b. Periodic	faults		
		Spectrogram Hairiness	c. CRL			
		i-c, ii-a, iii-b, iv-	d. Optical	(B)	i-b, ii-c, iii-a, iv-d	45
		i-d, ii-a, iii-c, iv-		(D)	i-a, ii-d, iii-b, iv-c	
	(0)			(2)	1 u, 11 u, 11 o, 11 o	
99.	Which	n one of the follo	wing fibres ca	n be prod	uced using melt spinning tech	nnology?
	(A)	Viscose		(B)	Lyocell	
	(C)	Cuprammonium	rayon	(D)	Polyacrylonitrile	
100	Sport	aneous wetting o	lenends on	10		
	-	Capillary sorptic	•	(B)	Work of adhesion	
		Interfacial energ		· (D)	Work of cohesion	
DET	F 2012		-	16		100

ř.

	and	V _r denotes calculated l			arity (I), where V denote	es actual irregularity
	(A)	$IV_r = V$ $IV = V_r \times 100$		(B)	$IV = V_r$	
·	(C)	$IV = V_r \times 100$		(D)	$I = (V + V_r) \times 100$	
102.		number of faults per standard deviation wo		•	n follows Poisson distri	bution with mean n.
	(A)	n		(B)		
	(C)	n ²		(D)	2n	85
103.	Mat	ch the following:				
	P.	Lea Tester	1.	Uniformity r	atio	
	Q.	Classimat faults	2.	Periodic vari	ation	
	R.	Fibro graph	3.	Objectionabl	le fault	
	S.			Yarn tensile	strength	8
100		P-4, Q-3, R-1, S-2		(B)	P-3, Q-4, R-2, S-1	81
	(C)	P-1, Q-4, R-3, S-2		(D)	P-2, Q-3, R-4, S-1	
104.		CV% of mass irregula deviation from mean ar			ally equal U% multiplied	l by when
	(A)	1.00		(B)	1.25	
	(C)	1.40		(D)	1.82	
105.	The	unit of flexural rigidity	ofa	woven fabric	is	
	(A)	mN/mm ²		(B)	mN/mm	
	(0)	mN mm		(Ď)	mN mm ²	
106.	The	idealised helical yarn s	truct	ure is assume	d to be made up of very l	arge no. of
	(A)	Fibres		(B)	Filaments	
	(C)	Fibres and Filaments		(D)	None of the above	
107.	Twi	st multiplier for cotton	hosie	ery yarn		
	(A)	2.8 - 3.1		(B)	3.2 - 3.6	
	(C)	4.0 4.5		(D)	5.0 – 5.5	
				17		DETE 2012

108.	Con	traction factor is given	by			
	(A)	length of zero twist y	yarn		(B)	length of twisted yarn length of zero twist yarn
1				. 2		
	(C)	length of zero twist length of twisted y	yarn yarn)2	(D)	(length of twisted yarn) length of zero twist yarn)
109.	Con	traction factor for a tw	ist ar	igle of 30)°	*
	(A)	1.032			(B)	1.078 1.278
	(C)	1.153			(D)	1.278
110.			n, me	ean fibre	positi	ion for a twist angle ranging from $0-50^{\circ}$ is
	(A)	0.5 0.3			(B)	0.2
	(C)	0.3			(D)	0.7
111.	The	number of fibre in the	cros	s-section	of 20	tex yarn produced from 1.2 diner fiber is
	(4)	$\frac{20}{1.2}$			(0)	
			;		(A)	9 × 1.2
	(e)	$\frac{20\times9}{12}$			(D)	$ \frac{20}{9 \times 1.2} $ $ \frac{1.2 \times 9}{20} $
		1.2			•	20
112.	Mat	ch the most appropriat	e pair	rs:		
	Ρ.	Tenacity	1.	CN mm	1^2	
	Q.	Bending Rigidity	2.	mm		
	R.	Curvature	3.	CN/Tex	ĸ	
	S.	Elongation	4.	mm^{-1}		× '
	(A)	P-3, Q-4, R-1, S-2			(B)	P-3, O-1, R-4, S-2
		P-2, Q-3, R-4, S-1		•	(D)	P-3, Q-1, R-4, S-2 P-2, Q-3, R-1, S-4
113.	The	number of fibers in th	e cro:	ss-section	nofa	20 Ne Cotton Yarn would be approximately
	(A)	50			(B)	150
	(C)	240		1	(D)	360
114.	The	coarser fibers prefere	ntially	/ migrate		
	SAY	to the surface of the	yam		(B)	to the core of the yarn
	(C)	at random			(D)	no relation at all
115.	The	value of retraction for	twist	t angle 1()° ~ 5	0° lies in the range of
		0 to 0.3			(B)	1 to 1.3
	(C)	2 to 2.3			(D)	1 to ∞
DET	E 20	12			18	

116. Fraction of the total area covered by the fabric is given by

(A)
$$k_1 + k_2 + 28$$

(B)
$$k_1 + k_2 - \frac{k_1 k_2}{28}$$

(D) $(k_1 + k_2) + \frac{k_1 k_2}{28}$

(C)
$$(k_1 + k_2)^2 - k_1 k_2 \times 28$$

(D)
$$(k_1 + k_2) + \frac{k_1 k_2}{28}$$

Where k₁ - warp cover

- 117. "Tightness" of a fabric can be determined by
 - (A) Actual cover factor / Max. cover factor
 - (B) Max. cover factor / Actual cover factor
 - (C) (Max. cover factor / Actual cover factor)²
 - (D) (Actual cover factor / Max. cover factor)²
- 118. Among the following yarn types the specific volume is highest for
 - spun rayon

(C) worsted

- (D) woollen
- 119. In woven fabric tensile deformation, initial high modulus of the fabric is due to
 - (A) frictional resistance to bending of the threads
 - (B) force needed to unbend the threads
 - (C) crimp redistribution
 - (D) (B) and (C)
- 120. In knitted fabrics, relation between stitch density and stitch length is given by
 - (A) Stitch density $\propto Cl^2$
- (B) Stitch density $\propto \frac{c}{R}$

(C) Stitch density $\propto \frac{1}{t^2}$

- (D) Stitch density $\propto l^2$
- 121. Which clutch cannot be used for transferring power when the machine elements are running at high speeds?
 - (A) Jaw clutch

- (B) Flat friction clutch
- Conical friction clutch
- (D) Centrifugal clutch
- 122. Internal expanding brake is mainly used in
 - (A) Lap forming machine
- (B) Ring frame

(C) Speed frame

Both (B) & (C) (D)

123.	Ball	bearings are mainly used in		
	(A)	Blowroom beaters	(B)	Carding machine
	(C)	Speed frame	(D)	All the above
124.			ase of b	obbin lead mechanism of winding at speed
	fram)	
	/	Winding rate = $\pi \times d_B \times (N_f - N_f)$	_	
	(B)	Winding rate = $\pi \times d_B \times (N_B - N_B)$	-	
	(C)	Winding rate = $\pi \times d_B \times (N_B + N_B)$	(_f)	
	(D)	Winding rate = $\pi \times d_B \left(\frac{N_B}{N_f} \right)$		
	Whe	re d _B is diameter of bobbin		
		N _B is bobbin speed		
		N _f is flyer speed		
		- 14 - 2 - 15 - 1 - 15 - 1		
125.	In ½	Twill shedding cam the Lower D	well An	gle is
	(A)	80°	(B)	160°
	(C)	40°	(D)	120°
	, ,			
126.	The	contact angle for the super hydrop	hobic si	urface is
	(A)	60°	(B)	30° 160°
	(C)	100°	(B)	160°
127.	If the	e cloth is of 150 grams per square	metre a	nd its bending length in the warp direction is
	3 cm	then its corresponding flexural r	igidity i	_
	(A)	0.405	(B)	4.050
	(C)	4.500	(D)	4500
128.	Mate	ch the pairs		
		Capillary rise	1.	Air permeability
	Q.	Number of interlacement / unit ar	ea 2.	Tensile strength
	R.	Cover factor	3.	Drapeability
		Bending length		Wicking
	(A)	P-2, Q-3, R-4, S-1 P-4, Q-2, R-1, S-3		P-3, Q-4, R-1, S-2
	(P)	P-4, Q-2, R-1, S-3	(D)	P-2, Q-4, R-3, S-1
129.	The	fibre with negative birefringence i	is	
	(A)		(B)	acrylic
	(C)	nylon 6	(D)	nylon 6,6
DET	ΓE 20	12	20	

130. Burs	sting strength is normally carried	u oui	101	
(A)	Woven fabrics		(B)	Non-woven fabrics
(C)	Knitted fabrics		(D)	Braided fabrics
131. Pur	oose of full annealing is			
(A)	To soften the steel		(B)	To increase hardness
(C)	To soften the steel To remove dislocations		(D)	To enable it to cut other metals
	face hardening is generally given	n to	•	
(A)	Rings Roller Stand		(B)	Spindle blade
(C)	Roller Stand		(D)	All the above
133. The	factor of safety (f _s) in designing	g any	/ mach	ine component is
(M	Failure stress		(D)	$f_s = \frac{\text{Working load}}{\text{Failure load}}$
(A)	$I_s = Allowable stress$		(B)	I _s = Failure load
(C)	$f_s = \frac{\text{Failure stress}}{\text{Allowable stress}}$ $f_s = \frac{\text{Allowable stress}}{\text{Failure stress}}$		(D)	$f_s = \frac{1 - Failure load}{Working load}$
134. Wh	ich one of the following does no	t fal	lunde	r hardening treatment ?
(A)	Nitriding		(B)	Carburizing
(C)	Carbo nitriding		(D)	Cyrogenics
135. Loc	al hardening can be carried out	by		
(A)	Cyrogenics		(B)	Flame hardening
(C)	Carburising		(D)	Cyaniding
136. In a	an system, there is re	lativ	e mot	ion between two or more of the axes about
	Worm gear		(B)	Rack and pinion
ies	Epicyclic gear		(D)	Belt drive
137. Mai	tch the following:			
	Negative Cam	1.	Intern	nittent rotary motion
Q.		2.		dic motion
R.	Positive Cam	3.		verse motion
S.	Ratchet & Pawl Mechanism	4.		rolled upward motion
	P-2, Q-3, R-4, S-1		(B)	P-3, Q-4, R-1, S-2
(C)			(D)	P-4, Q-3, R-2, S-1
(0)	, < -,,		1	- ', (-))

DETE 2012

138.	shaft		motion	between non-parallel and non-intersecting
	(A)	Worm & worm gear	(B)	Spur gear
-	(C)	Helical gear	(D)	Herringbone gear
139.		simple gear train, the direction of irst wheel, if the number of interme		n of the last wheel will be opposite to that of wheel is
	(A)	1	(B)	2
	(C)	3	(D)	5
140.	The	shore hardness of back top roller o	f ring f	rame for processing 100% cotton is
	(A)	23	(B)	36
	(e)	80	(D)	93
141.		rmine the combined cleaning elency of blow room is 65% and the		ey of blow room & card, if the cleaning s 95%.
	(A)	90.25	(B)	93.25
	(2)	98.25	(D)	99.99
142.		type of flutes made on the fron	ıt, mid	dle and back bottom rollers of ring frame
	(A)	helical, helical	(B)	helical, knurled, helical
	(C)	knurled, helical, knurled	(D)	helical, knurled, knurled
143.	Max	imum flyer speed of speed frame i	S	
	(A)	400 rpm	(B)	1400 rpm
	(C)	2500 rpm	(D)	3800 rpm
144.	Load	l applied to the front top roller of t	hree ro	ller drafting system of ring frame is
	(A)	10 – 12 kg	(B)	12 – 14 kg
		16 - 18 kg	(D)	20 kg
145.	Whic	ch one of the following is not the f	unction	of draw frame ?
	(A)	blending	(B)	hook removal
	(C)	fibre to fibre separation	(D)	fibre parallelisation
DET	Æ 201	12	22	0

146. Ass	` ,		_	high level of particular	-
Dag				mbining chemical and me he physical properties of	_
Kea	` '		-	chanically at blow room.	the impurities and
(A)	·			correct explanation of (A).
(B)				the correct explanation o	
(C)	(A) is true, but (R) i	•	,	•	` '
(D)	(A) and (R) are false				
147. Mat	ch the following:				¥
P.	Ring spinning	1. Metal	detector		
Q.	Compact spinning	2. Polar o	drafting s	ystem	
R.	Blow room	3. Air su	ction		
S.	Draw frame	4. Doubl	e apron d	rafting system	100
(A)	P-4, Q-3, R-1, S-2		(B)	P-2, Q-3, R-4, S-1	
(C)	P-3, Q-4, R-2, S-1		(D)	P-1, Q-4, R-3, S-2	15
	er properties affect the		•		
(i)				g are likely to get ruptured	
(ii)				s are likely to produce ne	•
(iii)		_	_	re likely to produce uneve	enness.
(iv)		t the proces			
(A)	• •		(B)	` / / /	
(C)	(i), (ii), (iii) are true	;	(10)	All are true	
149 The	maximum traveller sp	need is abou	ıt		
(A)	40 m/s	peca is abou	(B)	40 m/min	
(C)	40 inches/sec		(D)	40 inches/min	
(0)			(3)	TO MONOS/IIII	
150. Whi	ich one of the followir	ng material	is not use	ed for making rings?	
(A)	Case harden steel	C	(B)	Nitrided steel	
(C)	Ball bearings steel		(D)	Cast iron	
			-		
151. Whi	ich of the following is	not related	to metho	d study?	
(A)	Flow process chart		(B)	Multiple activity chart	
(C)	String diagram		(D)	Stop watch method	
			-		
152. Stag	ges involved in motion	study			
(A)	Process analysis		(B)	Operation analysis	
(C)	Activity sampling		(B)	(A) & (B)	e
			23		DETE 2012

١.

DETE	2012	24		0
-	(i), (ii), (iii) are true.	(D)	All are true	
	A) (i) is true.	(B)	(i), (ii) are true.	
`	v) Exact capacity of the air	-	(i) (ii) and trace	
•	ii) Actual exhaust capacity	•	sor.	
`	i) Leakage and pressure los			
(i	·			
	apacity of air-jet compressor	and the second of the second o	s is decided by	
Picroi				i
(1) using spun yam ranging	from gauze to	denim fabrics.	
((c) less floor space as it does	s not require ar	y support for west insertion.	
(H	B) its low noise level compa	ared to convent	ional method of west insertion.	
1	2000 m/min.			
()		_	f fabric with west insertion rate of	f about
	ir-jet looms has the major ad	vantage of		
158 C	hoose the best :			
- CC	P-2, Q-4, R-3, S-1	(D)	P-1, Q-3, R-2, S-4	
	A) P-3, Q-4, R-1, S-2	` '	P-2, Q-4, R-1, S-3	
	Weft stop	4. Air-jet to		
	R. Decrease in air velocity		in air tube length	
). Fasciated yarn	-	nt below 10 °C	
	. Air quality		umber of relay nozzles	
157. M	atch the following:			
(1	(A) 13 14130, but (R) 13 tru			
,	(A) is true, but (R) is false(A) is false, but (R) is true			
(E	, , , , ,		the correct explanation of (A).	
A			correct explanation of (A).	70
		forces of the pa		
	· ·		oved by an imbalance of centrifug	
156. A	ssertion (A): In spinning, th	ne air currents a	re used for the removal of trash partic	les.
1) Office and administration	i cost (D)	Direct expenses	
(P	Material costOffice and administration	` '	Labour cost Direct expenses	
	hich one of the following is	_		
			. 0	
CC	Simo chart	(D)	Cycle graph	
,) Flow diagram	(B)	String diagram	
154. Fi	nd the odd-one out.			
(0	y row diagram	(2)		
- (1) Flow diagram	(D)	Stop watch	
X) Wink clock	(B)	Process chart	

160.		ere exists lot of confusion in the on, what is the technique to be reso		of cut pieces of garments in the assert correction?	embly
	(A)	· ·		Work measurement	
	(C)	Motion analysis	(B)	Flow chart analysis	
161.	Facto	ors influencing cleaning efficiency	air blo	w room	
	(A)	Trash in mixing	(B)	Beater speed	
	(C)	Fan speed	(D)	All the above	
162.	Ina	carding machine, wire point densit	y is hig	ther for	
	(A)	Cylinder	(B)	Doffer	
	(C)	Licker-in	(D)	Flats	
163.	Facto	ors influencing productivity at pirm	ı windir	ng	
	(A)	Spindle stoppages	(B)	Efficiency of tenter	54
	(C)	Non-availability of empty pirns	(B)	All the above	
164.	Sour	ces of process waste in loom shed			
	(A)	shuttle smash	(B)	mending of broken ends	***
	(C)	change of pirns	(D)	(B) & (C)	
165.		scowing is carried out using	-		
	(A)	amylase	(B)	pectinase	
	(C)	catalase	(D)	cellulase	
166.		k study is a generic term for metho			
	(i)	used in the examination of huma			
	(ii)	lead systematically to the investig	~		
		the efficiency and economy of th	e situat	ion are being reviewed.	
	(iv)	*	(D)	(i) (ii) and town	
	(A)	(i) is true	(B)	(i), (ii) are true	
	(C)	(i), (ii) and (iii) are true	(0)	All are true	
167.	Asse		ubsequ	olied only after method study as ent establishment of time standard food study.	
	Reas	son (R) : Method study is concent of a job.	cerned	with the elimination of unnecessary	work
	(A)	Both (A) and (R) are true and (R)) is the	correct explanation of (A).	•
1	(B)	Both (A) and (R) are true, but (R			
	(C)	(A) is true, but (R) is false.	,	1	
		(A) is false, but (R) is true.			

DETE 2012

168. In the process chart, match the symbols with events:				
P. Operation	(i)			
Q. Storage	(ii) O			
R. Delay or temporary storage	(iii) D			
S. Inspection	(iv) Δ			
(A) P-(ii), Q-(i), R-(iii), S-(iv)	(B) P-(ii), Q-(iv), R-(i), S-(iii)			
(C) P-(ii), Q-(iv), R-(iii), S-(i)	(D) P-(ii), Q-(iii), R-(iv), S-(i)			
169. Sequencing Type:	A			
The basic procedure for method stu				
(A) Select, record, develop, exam	nine, install, maintain			
(B) Select, record, examine, insta	ıll, develop, maintain			
(e) Select, record, examine, deve	elop, install, maintain			
(D) Select, record, examine, deve	elop, maintain, install			
170. Productivity is defined as				
(A) the ratio of output produced t	to the input resources utilised in the production.			
(B) improving the quality and rec	ducing the wastage.			
(C) reducing the cost of production	on.			
(D) reduce the power consumption	on.			
171. Benefits of higher productivity are				
(i) more output is produced with	same or less input.			
(ii) the same output is produced	with same input.			
(iii) less output is produced from	more input.			
(iv) increase in output is more that	an increase in input.			
(A) (i) is only true	(B) (ii) and (iii) are true			
(C) All are true	(D) (i) and (iv) are true			
172. Assertion (A): Besides, satisfactory quality of preparation, the process control programme in winding should also ensure a satisfactory level of productivity.				
	rtant factors that govern productivity in winding are end length of the yarn in cop, the winding speed etc.			
(A) Both (A) and (R) are true and	(R) is the correct explanation of (A).			
	t (R) is not the correct explanation of (A).			
(C) (A) is true, but (R) is false.				
(D) (A) is false, but (R) is true.				

173.	'Cro	'Cross bar' fabric defect is occurred due to					
	(A)	missing of warp	(B)	cut ends			
	(C)	wrong ends	(B)	blend variation of fibres in the yarn			
174.		ntenance checks are carried out while	le the	machine is in operation in	type of		
		Corrective	OBS	Predictive			
	` ,	Retentive	(D)	Remedial			
175.	Asse	` '		ly carried out in textile mills to exan arious process machinery.	nine the		
	Reas	son (R) : For enhancing the mach	ine pr	oductivity and product.			
	(A) Both (A) and (R) are true and (R) is the correct explanation of (A).						
	(B) Both (A) and (R) are true, and (R) is not the correct explanation of (A).(C) (A) is true, but (R) is false.						
	(D)	(A) is false, but (R) is true.					
176.	The	closest setting in carding machine is	in be	tween	20		
	(A)	licker-in and cylinder	(B)	cylinder and flat			
,	(Q)	cylinder and doffer	(D)	feed plate and licker-in			
177.	Whi	ch of the following are warp protect	or me	chanisms ?			
		Fast reed					
1	(B)	Drop wire warp stop			*		
	(C)	Side sweep west feeler mechanism	l				
	(D)	Both (A) and (B)					
178.	Over	head travelling cleaners in ring fran	nė has	the following faculty:			
	(A)	Blowing only	(B)	Suction only			
	(9)	Blowing and Suction	(D)	Wiping only			
179.	The	lubricating oil or grease is not used	at				
	(A)	Spur gears of drafting arrangement					
	(B)	Jockey pulley					
	(C)	Spindles					
	(D)	Rings					
180.	Pick	out the odd one:					
	(A)	Machine card	(B)	Maintenance checklist			
	(C)	Renovation	(D)	End breakage report			

181.	Within lap cv% of blow room lap should be within			
	(A)	1%	(B)	2%
-	(C)	3%	(D)	4%
182.	Limi	ting oxygen index value is higher fo	r	
	(A)	Polyester	(B)	Polyethylene
	(C)	Cotton	(B)	Wool
183.	Biop	olishing is carried out using	en	zyme.
	(A)	amylase	(B)	cellulase
	(C)	catalase	(D)	lipase
184.	Whic	ch one of the following is not starch	based	size formulation?
	(A)	Sago	(B)	Maize
	(C)	Potato	(D)	CMC
185.	-	trogram is drawn between		
	(A)	Wavelength in X axis and amplitude		
	(B)			
	(C)	` '		
	(D)	Diameter in X axis and wavelength	n in Y	axis
104	Wilei	ah ana af tha fallawing is not unlated	1 4	11-0
100.		ch one of the following is not related Berkolisation		
	(A)	Trucing	(B)	Buffing
-	(C)	Trueing	(D)	Acid treatment
187.	Berk	olising is a treatment associated wit	h	
		Ring		Traveller
	•	Flyer	(D)	Cots
	(')			
188.	For t	he production of 100% cotton yarn,	the ha	ardness of front roller cot is
	(A)	more than that of back roller.	(B)	less than that of back roller.
	(C)	equal to that of back roller.	(D)	Irrelevant.
189.	In Ri	ng Frame middle bottom roller that	carrie	s apron has
	(A)	Straight flutes	(B)	Helical flutes
	(C)	Knurled flutes	(D)	Plain surface
190.		parabolic speed pattern in ring frame	e coul	d be obtained with the use of
	(A)	Dual drive motor	(B)	Step pulley drive
	(e)	Frequency controlled drive motor	(D)	Energy saving motor
DET	E 201	2	28	

191.	Whic	th one of the following is used to		
	(A)	acid number	(B)	volatility
	(0)	dropping point	(D)	viscosity index
1	,	11 01	` ′	•
192	The I	RH% required at Ring Frame Sect	ion is	
1,2.		55%	(B)	35%
	(A)		(D)	95%
	(C)	75%	(D)	93/0
100	TP1	1 Control to Mileton Con	115	
193.		solar protection factor is higher for		I. Charles
	(A)		(B)	Jute fibre
	(C)	Hemp fibre	(D)	Wool fibre
194.	The	fibre that will float in water		
	(A)	Polypropylene	(B)	Nylon 6
	(C)	Nylon 6,6	(D)	PET
	(-)	. ,		
105	The	light intensity in lumens/ft2 for we	aving	lenartment ranges from
173.		10 to 20	(C) 1	
	(A)		(B)	
	(16)	60 to 80	(D)	80 to 100
	D **	0/ 11 0		
196.		% suitable for warping	-	·
	(A)	45%	(B)	60%
	(C)	70%	(D)	85%
197.	In_	4	or simil	ar operations are kept at one location.
	(A)	process layout	(B)	product layout
	(C)	line layout	(D)	none of the above
198.	Ergo	nomics refers to		
	(A)	Scientific study of design of expe	eriment	S
	(B)	Study of plant layout		
	(C)	Study of plant location		
	(D)		etween	man and his working environment
1	(2)	Scientific study of relationship o	Ctwccii	man and mis working charlement
100	Foot	ors affecting selection of material	handlin	a aquinments
177.		ors affecting selection of material		
	(A)	Nature of handling devices	(B)	Effective use of labour
	(C)	Manufacturing cycle	(B)	All the above
200.	Desi	rable lighting level in a weaving s	hed for	grey cloth weaving
	(A)	40 lumens/ft ²	(B)	55 lumens/ft ²
	(C)	80 lumens/ft ²	(D)	100 lumens/ft ²
	(-)		(-)	